Uploaded model
- Developed by: Enzo Palmisano
- License: mit
- Finetuned from model : microsoft/Phi-3-mini-4k-instruct
Evaluation
For a detailed comparison of model performance, check out the Leaderboard for Italian Language Models.
Here's a breakdown of the performance metrics:
Metric | hellaswag_it acc_norm | arc_it acc_norm | m_mmlu_it 5-shot acc | Average |
---|---|---|---|---|
Accuracy Normalized | 0.6088 | 0.4440 | 0.5667 | 0.5398 |
How to Use
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("e-palmisano/Phi3-ITA-mini-4k-instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("e-palmisano/Phi3-ITA-mini-4k-instruct", trust_remote_code=True)
model.to(device)
generation_config = GenerationConfig(
penalty_alpha=0.6, # The values balance the model confidence and the degeneration penalty in contrastive search decoding.
do_sample = True, # Whether or not to use sampling ; use greedy decoding otherwise.
top_k=5, # The number of highest probability vocabulary tokens to keep for top-k-filtering.
temperature=0.001, # The value used to modulate the next token probabilities.
repetition_penalty=1.7, # The parameter for repetition penalty. 1.0 means no penalty.
max_new_tokens = 64, # The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.
eos_token_id=tokenizer.eos_token_id, # The id of the *end-of-sequence* token.
pad_token_id=tokenizer.eos_token_id, # The id of the *padding* token.
)
def generate_answer(question):
messages = [
{"role": "user", "content": question},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
outputs = model.generate(model_inputs, generation_config=generation_config)
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return result
question = """Quale è la torre più famosa di Parigi?"""
answer = generate_answer(question)
print(answer)
- Downloads last month
- 4,296
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.