|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2843 |
|
- Precision: 0.4118 |
|
- Recall: 0.8235 |
|
- F1: 0.5490 |
|
- Accuracy: 0.9485 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 8.33 | 100 | 0.6271 | 0.1864 | 0.6471 | 0.2895 | 0.8757 | |
|
| No log | 16.67 | 200 | 0.1736 | 0.52 | 0.7647 | 0.6190 | 0.9734 | |
|
| No log | 25.0 | 300 | 0.1302 | 0.5714 | 0.9412 | 0.7111 | 0.9734 | |
|
| No log | 33.33 | 400 | 0.2835 | 0.5333 | 0.9412 | 0.6809 | 0.9556 | |
|
| 0.287 | 41.67 | 500 | 0.0924 | 0.4828 | 0.8235 | 0.6087 | 0.9805 | |
|
| 0.287 | 50.0 | 600 | 0.2594 | 0.4412 | 0.8824 | 0.5882 | 0.9485 | |
|
| 0.287 | 58.33 | 700 | 0.3172 | 0.4412 | 0.8824 | 0.5882 | 0.9467 | |
|
| 0.287 | 66.67 | 800 | 0.2447 | 0.4545 | 0.8824 | 0.6 | 0.9520 | |
|
| 0.287 | 75.0 | 900 | 0.2941 | 0.4118 | 0.8235 | 0.5490 | 0.9485 | |
|
| 0.013 | 83.33 | 1000 | 0.2843 | 0.4118 | 0.8235 | 0.5490 | 0.9485 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|