layoutmlv3_thursday_oct4_v7

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2861
  • Precision: 0.8352
  • Recall: 0.7894
  • F1: 0.8116
  • Accuracy: 0.9586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.12 100 0.2568 0.8574 0.7770 0.8152 0.9586
No log 2.25 200 0.2653 0.8268 0.7858 0.8058 0.9581
No log 3.37 300 0.2728 0.7982 0.7770 0.7874 0.9565
No log 4.49 400 0.2626 0.8569 0.7735 0.8130 0.9589
0.114 5.62 500 0.2861 0.8352 0.7894 0.8116 0.9586
0.114 6.74 600 0.2978 0.8205 0.7929 0.8065 0.9582
0.114 7.87 700 0.2942 0.8256 0.7876 0.8062 0.9584
0.114 8.99 800 0.2910 0.8420 0.7735 0.8063 0.9579
0.114 10.11 900 0.3028 0.8346 0.7770 0.8048 0.9574
0.0846 11.24 1000 0.2989 0.8318 0.7876 0.8091 0.9581

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dwitidibyajyoti/layoutmlv3_thursday_oct4_v7

Finetuned
(217)
this model