Here is represented tinybert model for German language (de). The model was created by distilling of bert base cased model(https://huggingface.co/dbmdz/bert-base-german-cased) in the way described in https://arxiv.org/abs/1909.10351 (TinyBERT: Distilling BERT for Natural Language Understanding)

Dataset: German Wikipedia Text Corpus - https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus

Versions: torch==1.4.0 transformers==4.8.1

How to load model for LM(fill-mask) task:

tokenizer = transformers.BertTokenizer.from_pretrained(model_dir + '/vocab.txt', do_lower_case=False) config = transformers.BertConfig.from_json_file(model_dir+'config.json') model = transformers.BertModel(config=config) model.pooler = nn.Sequential(nn.Linear(in_features=model.config.hidden_size, out_features=model.config.hidden_size, bias=True), nn.LayerNorm((model.config.hidden_size,), eps=1e-12, elementwise_affine=True), nn.Linear(in_features=model.config.hidden_size, out_features=len(tokenizer), bias=True))

model.resize_token_embeddings(len(tokenizer))

checkpoint = torch.load(model_dir+'/pytorch_model.bin', map_location=torch.device('cuda')) model.load_state_dict(checkpoint)

In case of NER or Classification task we have to load model for LM task and change pooler:

model.pooler = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob, inplace=False), nn.Linear(in_features=config.hidden_size, out_features=n_classes, bias=True))

Downloads last month
41
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.