update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: h3
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# h3
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2782
|
20 |
+
- Exact Match: 0.2879
|
21 |
+
- Bleu: 0.9121
|
22 |
+
- Codebleu: 0.7482
|
23 |
+
- Ngram Match Score: 0.7504
|
24 |
+
- Weighted Ngram Match Score: 0.7583
|
25 |
+
- Syntax Match Score: 0.7673
|
26 |
+
- Dataflow Match Score: 0.7169
|
27 |
+
- Chrf: 93.1064
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 4
|
48 |
+
- eval_batch_size: 4
|
49 |
+
- seed: 17
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- num_epochs: 200
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf |
|
58 |
+
|:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-----------------:|:--------------------------:|:------------------:|:--------------------:|:-------:|
|
59 |
+
| 0.8612 | 11.94 | 1600 | 0.2725 | 0.0455 | 0.8477 | 0.6050 | 0.6229 | 0.6335 | 0.6203 | 0.5431 | 88.7010 |
|
60 |
+
| 0.175 | 23.88 | 3200 | 0.2311 | 0.0909 | 0.8739 | 0.6304 | 0.6566 | 0.6656 | 0.6484 | 0.5508 | 90.7364 |
|
61 |
+
| 0.1036 | 35.82 | 4800 | 0.2172 | 0.1818 | 0.8930 | 0.6905 | 0.6976 | 0.7062 | 0.7172 | 0.6409 | 91.9702 |
|
62 |
+
| 0.0695 | 47.76 | 6400 | 0.2233 | 0.2424 | 0.8944 | 0.7017 | 0.7148 | 0.7232 | 0.7187 | 0.6499 | 92.0340 |
|
63 |
+
| 0.0482 | 59.7 | 8000 | 0.2407 | 0.2879 | 0.9046 | 0.7301 | 0.7387 | 0.7456 | 0.7475 | 0.6885 | 92.6219 |
|
64 |
+
| 0.0352 | 71.64 | 9600 | 0.2407 | 0.2424 | 0.9074 | 0.7255 | 0.7371 | 0.7448 | 0.7482 | 0.6718 | 92.8281 |
|
65 |
+
| 0.0262 | 83.58 | 11200 | 0.2596 | 0.3030 | 0.9061 | 0.7445 | 0.7415 | 0.7500 | 0.7774 | 0.7091 | 92.6737 |
|
66 |
+
| 0.0213 | 95.52 | 12800 | 0.2589 | 0.2879 | 0.9061 | 0.7308 | 0.7409 | 0.7488 | 0.7464 | 0.6873 | 92.7814 |
|
67 |
+
| 0.0164 | 107.46 | 14400 | 0.2679 | 0.2879 | 0.9096 | 0.7452 | 0.7510 | 0.7592 | 0.7626 | 0.7079 | 92.9900 |
|
68 |
+
| 0.0131 | 119.4 | 16000 | 0.2660 | 0.2879 | 0.9096 | 0.7447 | 0.7480 | 0.7564 | 0.7666 | 0.7079 | 93.0122 |
|
69 |
+
| 0.0116 | 131.34 | 17600 | 0.2669 | 0.2727 | 0.9092 | 0.7463 | 0.7445 | 0.7529 | 0.7684 | 0.7194 | 92.9256 |
|
70 |
+
| 0.0093 | 143.28 | 19200 | 0.2678 | 0.2879 | 0.9113 | 0.7531 | 0.7496 | 0.7581 | 0.7709 | 0.7336 | 93.0406 |
|
71 |
+
| 0.0083 | 155.22 | 20800 | 0.2728 | 0.2879 | 0.9103 | 0.7407 | 0.7462 | 0.7540 | 0.7702 | 0.6924 | 92.9302 |
|
72 |
+
| 0.0077 | 167.16 | 22400 | 0.2774 | 0.2879 | 0.9103 | 0.7449 | 0.7449 | 0.7532 | 0.7659 | 0.7156 | 92.9742 |
|
73 |
+
| 0.0069 | 179.1 | 24000 | 0.2774 | 0.2879 | 0.9120 | 0.7396 | 0.7463 | 0.7539 | 0.7633 | 0.6950 | 93.1057 |
|
74 |
+
| 0.0069 | 191.04 | 25600 | 0.2782 | 0.2879 | 0.9121 | 0.7482 | 0.7504 | 0.7583 | 0.7673 | 0.7169 | 93.1064 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.24.0
|
80 |
+
- Pytorch 1.13.0
|
81 |
+
- Datasets 2.6.1
|
82 |
+
- Tokenizers 0.13.1
|