h2
This model is a fine-tuned version of distilgpt2 on hearthstone. GitHub repo. It achieves the following results on the evaluation set:
- Loss: 2.5771
- Exact Match: 0.0
- Bleu: 0.6619
- Codebleu: 0.5374
- Ngram Match Score: 0.4051
- Weighted Ngram Match Score: 0.4298
- Syntax Match Score: 0.5605
- Dataflow Match Score: 0.7541
- Chrf: 73.9625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf |
---|---|---|---|---|---|---|---|---|---|---|---|
1.2052 | 11.94 | 1600 | 1.2887 | 0.0 | 0.6340 | 0.4427 | 0.3384 | 0.3614 | 0.5263 | 0.5446 | 70.8004 |
0.3227 | 23.88 | 3200 | 1.4484 | 0.0 | 0.6575 | 0.5050 | 0.3767 | 0.3995 | 0.5955 | 0.6485 | 72.9553 |
0.205 | 35.82 | 4800 | 1.6392 | 0.0 | 0.6598 | 0.5174 | 0.3788 | 0.4022 | 0.5821 | 0.7063 | 73.2766 |
0.1392 | 47.76 | 6400 | 1.8219 | 0.0 | 0.6584 | 0.5279 | 0.3922 | 0.4159 | 0.5742 | 0.7294 | 73.5022 |
0.0979 | 59.7 | 8000 | 1.9416 | 0.0 | 0.6635 | 0.5305 | 0.4012 | 0.4248 | 0.5699 | 0.7261 | 73.8081 |
0.0694 | 71.64 | 9600 | 2.1793 | 0.0 | 0.6593 | 0.5400 | 0.4027 | 0.4271 | 0.5562 | 0.7739 | 73.6746 |
0.0512 | 83.58 | 11200 | 2.2547 | 0.0 | 0.6585 | 0.5433 | 0.4040 | 0.4283 | 0.5486 | 0.7921 | 73.7670 |
0.0399 | 95.52 | 12800 | 2.3037 | 0.0 | 0.6585 | 0.5354 | 0.4040 | 0.4282 | 0.5454 | 0.7640 | 73.7431 |
0.0316 | 107.46 | 14400 | 2.4113 | 0.0 | 0.6577 | 0.5294 | 0.4006 | 0.4257 | 0.5504 | 0.7409 | 73.7004 |
0.0254 | 119.4 | 16000 | 2.4407 | 0.0 | 0.6607 | 0.5412 | 0.4041 | 0.4285 | 0.5598 | 0.7723 | 73.8828 |
0.0208 | 131.34 | 17600 | 2.4993 | 0.0 | 0.6637 | 0.5330 | 0.4042 | 0.4286 | 0.5684 | 0.7310 | 74.1760 |
0.0176 | 143.28 | 19200 | 2.5138 | 0.0 | 0.6627 | 0.5434 | 0.4050 | 0.4295 | 0.5620 | 0.7772 | 74.0546 |
0.0158 | 155.22 | 20800 | 2.5589 | 0.0 | 0.6616 | 0.5347 | 0.4044 | 0.4291 | 0.5512 | 0.7541 | 73.9516 |
0.0147 | 167.16 | 22400 | 2.5554 | 0.0 | 0.6620 | 0.5354 | 0.4049 | 0.4295 | 0.5630 | 0.7442 | 73.9461 |
0.0134 | 179.1 | 24000 | 2.5696 | 0.0 | 0.6607 | 0.5395 | 0.4046 | 0.4293 | 0.5602 | 0.7640 | 73.8383 |
0.0135 | 191.04 | 25600 | 2.5771 | 0.0 | 0.6619 | 0.5374 | 0.4051 | 0.4298 | 0.5605 | 0.7541 | 73.9625 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train dvitel/h2
Evaluation results
- Exact Match on HearthStonetest set self-reported0.000
- BLEU on HearthStonetest set self-reported0.608
- CodeBLEU on HearthStonetest set self-reported0.370
- chrF on HearthStonetest set self-reported68.779