h1 / README.md
dvitel's picture
update model card README.md
73e7c3e
|
raw
history blame
4.73 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: h1
    results: []

h1

This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0890
  • Exact Match: 0.1970
  • Bleu: 0.9737
  • Codebleu: 0.9172
  • Ngram Match Score: 0.8984
  • Weighted Ngram Match Score: 0.8985
  • Syntax Match Score: 0.9293
  • Dataflow Match Score: 0.9429
  • Chrf: 97.5313

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 17
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Exact Match Bleu Codebleu Ngram Match Score Weighted Ngram Match Score Syntax Match Score Dataflow Match Score Chrf
0.3871 11.94 1600 0.1043 0.0152 0.9499 0.8549 0.8089 0.8089 0.8653 0.9366 95.4674
0.0752 23.88 3200 0.0784 0.1212 0.9640 0.8874 0.8525 0.8526 0.8929 0.9516 96.7978
0.0448 35.82 4800 0.0717 0.1364 0.9693 0.9077 0.8782 0.8782 0.9069 0.9674 97.2100
0.0308 47.76 6400 0.0752 0.1364 0.9702 0.9061 0.8808 0.8810 0.9070 0.9554 97.1896
0.0223 59.7 8000 0.0762 0.1364 0.9724 0.9050 0.8877 0.8881 0.9093 0.9348 97.4616
0.0166 71.64 9600 0.0762 0.1667 0.9733 0.9140 0.8948 0.8951 0.9197 0.9461 97.4945
0.0128 83.58 11200 0.0793 0.1515 0.9728 0.9085 0.8911 0.8918 0.9189 0.9321 97.4152
0.0104 95.52 12800 0.0822 0.1667 0.9732 0.9165 0.8946 0.8950 0.9222 0.9541 97.4887
0.0084 107.46 14400 0.0832 0.1667 0.9737 0.9167 0.8970 0.8972 0.9254 0.9471 97.5326
0.007 119.4 16000 0.0837 0.1818 0.9743 0.9160 0.8983 0.8986 0.9238 0.9434 97.6638
0.0058 131.34 17600 0.0858 0.1818 0.9739 0.9200 0.8977 0.8977 0.9267 0.9579 97.5583
0.005 143.28 19200 0.0878 0.1818 0.9743 0.9180 0.8993 0.9001 0.9301 0.9426 97.5819
0.0044 155.22 20800 0.0877 0.1667 0.9736 0.9156 0.8957 0.8960 0.9278 0.9429 97.5109
0.0042 167.16 22400 0.0890 0.1970 0.9736 0.9171 0.8984 0.8984 0.9293 0.9424 97.5617
0.0038 179.1 24000 0.0891 0.2121 0.9738 0.9174 0.8991 0.8991 0.9285 0.9429 97.5452
0.0037 191.04 25600 0.0890 0.1970 0.9737 0.9172 0.8984 0.8985 0.9293 0.9429 97.5313

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1