scibert_ner_drugname

This model is a fine-tuned version of allenai/scibert_scivocab_cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1243
  • Precision: 0.7631
  • Recall: 0.8520
  • F1: 0.8051
  • Accuracy: 0.9722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0733 1.0 120 0.1176 0.6466 0.7713 0.7035 0.9583
0.0069 2.0 240 0.1126 0.6757 0.7848 0.7261 0.9654
0.0521 3.0 360 0.0949 0.7461 0.8565 0.7975 0.9707
0.0217 4.0 480 0.0972 0.7171 0.8296 0.7692 0.9718
0.001 5.0 600 0.1111 0.7422 0.8520 0.7933 0.9707
0.0044 6.0 720 0.1138 0.7664 0.8386 0.8009 0.9715
0.0011 7.0 840 0.1155 0.7449 0.8251 0.7830 0.9699
0.0006 8.0 960 0.1213 0.7344 0.8430 0.7850 0.9716
0.0289 9.0 1080 0.1238 0.7661 0.8520 0.8068 0.9718
0.0096 10.0 1200 0.1243 0.7631 0.8520 0.8051 0.9722

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for duytu/scibert_ner_drugname

Finetuned
(9)
this model