Edit model card

bert-base-romanian-ner

Updated: 21.01.2022

Model description

bert-base-romanian-ner is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. It has been trained to recognize 15 types of entities: persons, geo-political entities, locations, organizations, languages, national_religious_political entities, datetime, period, quantity, money, numeric, ordinal, facilities, works of art and events.

Specifically, this model is a bert-base-romanian-cased-v1 model that was fine-tuned on RONEC version 2.0, which holds 12330 sentences with over 0.5M tokens, to a total of 80.283 distinctly annotated entities. RONECv2 is a BIO2 annotated corpus, meaning this model will generate "B-" and "I-" style labels for entities.

The model will generate labels according to the following list: ['O', 'B-PERSON', 'I-PERSON', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-NAT_REL_POL', 'I-NAT_REL_POL', 'B-EVENT', 'I-EVENT', 'B-LANGUAGE', 'I-LANGUAGE', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-DATETIME', 'I-DATETIME', 'B-PERIOD', 'I-PERIOD', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-NUMERIC', 'I-NUMERIC', 'B-ORDINAL', 'I-ORDINAL', 'B-FACILITY', 'I-FACILITY']. Label 'O' represents Other.

How to use

There are 2 ways to use this model:

Directly in Transformers:

You can use this model with Transformers pipeline for NER; you will have to handle word tokenization in multiple subtokens cases with different labels.

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-ner")
model = AutoModelForTokenClassification.from_pretrained("dumitrescustefan/bert-base-romanian-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Alex cumpără un bilet pentru trenul 3118 în direcția Cluj cu plecare la ora 13:00."
ner_results = nlp(example)
print(ner_results)

Use in a Python package

pip install roner

Easy, takes care of word-token alignment, long sequences, etc. See details at https://github.com/dumitrescustefan/roner

Don't forget!

Remember to always sanitize your text! Replace s and t cedilla-letters to comma-letters before processing your text with these models, with :

text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș")

NER evaluation results

 'test/ent_type': 0.9276865720748901,
 'test/exact': 0.9118986129760742,
 'test/partial': 0.9356381297111511,
 'test/strict': 0.8921924233436584

Corpus details

The corpus has the following classes and distribution in the train/valid/test splits:

| Classes | Total | Train | | Valid | | Test | | |------------- |:------: |:------: |:-------: |:------: |:-------: |:------: |:-------: | | | # | # | % | # | % | # | % | | PERSON | 26130 | 19167 | 73.35 | 2733 | 10.46 | 4230 | 16.19 | | GPE | 11103 | 8193 | 73.79 | 1182 | 10.65 | 1728 | 15.56 | | LOC | 2467 | 1824 | 73.94 | 270 | 10.94 | 373 | 15.12 | | ORG | 7880 | 5688 | 72.18 | 880 | 11.17 | 1312 | 16.65 | | LANGUAGE | 467 | 342 | 73.23 | 52 | 11.13 | 73 | 15.63 | | NAT_REL_POL | 4970 | 3673 | 73.90 | 516 | 10.38 | 781 | 15.71 | | DATETIME | 9614 | 6960 | 72.39 | 1029 | 10.7 | 1625 | 16.9 | | PERIOD | 1188 | 862 | 72.56 | 129 | 10.86 | 197 | 16.58 | | QUANTITY | 1588 | 1161 | 73.11 | 181 | 11.4 | 246 | 15.49 | | MONEY | 1424 | 1041 | 73.10 | 159 | 11.17 | 224 | 15.73 | | NUMERIC | 7735 | 5734 | 74.13 | 814 | 10.52 | 1187 | 15.35 | | ORDINAL | 1893 | 1377 | 72.74 | 212 | 11.2 | 304 | 16.06 | | FACILITY | 1126 | 840 | 74.6 | 113 | 10.04 | 173 | 15.36 | | WORK_OF_ART | 1596 | 1157 | 72.49 | 176 | 11.03 | 263 | 16.48 | | EVENT | 1102 | 826 | 74.95 | 107 | 9.71 | 169 | 15.34 |

BibTeX entry and citation info

Please consider citing the following paper as a thank you to the authors of the RONEC, even if it describes v1 of the corpus and you are using a model trained on v2:

Dumitrescu, Stefan Daniel, and Andrei-Marius Avram. "Introducing RONEC--the Romanian Named Entity Corpus." arXiv preprint arXiv:1909.01247 (2019).

or in .bibtex format:

@article{dumitrescu2019introducing,
  title={Introducing RONEC--the Romanian Named Entity Corpus},
  author={Dumitrescu, Stefan Daniel and Avram, Andrei-Marius},
  journal={arXiv preprint arXiv:1909.01247},
  year={2019}
}
Downloads last month
15,428
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dumitrescustefan/bert-base-romanian-ner

Space using dumitrescustefan/bert-base-romanian-ner 1