QNLI

This model is a fine-tuned version of google-t5/t5-base on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2215
  • Accuracy: 0.9282

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2856 1.0 1637 0.2216 0.9149
0.2258 2.0 3274 0.2060 0.9220
0.1791 3.0 4911 0.2038 0.9277
0.1476 4.0 6548 0.2215 0.9282
0.1263 5.0 8185 0.2301 0.9279

Framework versions

  • Transformers 4.43.3
  • Pytorch 1.11.0+cu113
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
223M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for du33169/t5-base-finetuned-GLUE-QNLI

Base model

google-t5/t5-base
Finetuned
(435)
this model

Dataset used to train du33169/t5-base-finetuned-GLUE-QNLI

Evaluation results