train-bart-base / README.md
dtruong46me's picture
Update README.md
1df10b6 verified
metadata
license: mit
base_model: facebook/bart-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: train-bart-base
    results: []
datasets:
  - knkarthick/dialogsum
language:
  - en
pipeline_tag: summarization

train-bart-base

This model is a fine-tuned version of facebook/bart-base on knkarthick/dialogsum dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2710
  • Rouge1: 42.8665
  • Rouge2: 21.8559
  • Rougel: 37.536
  • Rougelsum: 39.3725
  • Gen Len: 18.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.3316 1.0 1557 0.2421 41.223 19.5022 35.5882 38.1294 18.0
0.2448 2.0 3115 0.2304 41.9635 20.5356 36.729 38.7748 18.0
0.2088 3.0 4672 0.2317 41.1639 20.168 35.9644 38.0607 18.0
0.1811 4.0 6230 0.2352 42.5001 21.4806 37.0514 39.0242 18.0
0.1591 5.0 7787 0.2422 42.148 20.9001 36.7976 38.6102 18.0
0.1399 6.0 9345 0.2465 42.1862 21.1403 36.7742 38.7401 18.0
0.1247 7.0 10902 0.2535 42.8571 21.998 37.6668 39.5963 18.0
0.1115 8.0 12460 0.2609 42.2841 21.1273 36.9562 38.9423 18.0
0.1019 9.0 14017 0.2677 42.8866 21.6628 37.5422 39.4627 18.0
0.0946 10.0 15570 0.2710 42.8665 21.8559 37.536 39.3725 18.0

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.15.2