deit-hoogberta

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5649
  • Cer: 0.9892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
3.9434 0.28 500 4.0407 1.0311
4.0651 0.57 1000 3.8605 1.1336
3.8945 0.85 1500 3.7821 1.0140
3.5253 1.14 2000 3.7052 0.9804
3.5323 1.42 2500 3.6638 1.0365
3.3077 1.71 3000 3.6237 0.9716
3.3064 1.99 3500 3.5834 0.9648
3.2921 2.28 4000 3.5971 0.9872
3.0653 2.56 4500 3.5830 1.0193
3.1912 2.85 5000 3.5649 0.9892

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.