PuoBERTaJW300 / README.md
vukosi's picture
Update README.md
fb3eeb9
|
raw
history blame
4.87 kB
---
license: cc-by-4.0
datasets:
- dsfsi/vukuzenzele-monolingual
- nchlt
- dsfsi/PuoData
- dsfsi/gov-za-monolingual
language:
- tn
library_name: transformers
pipeline_tag: fill-mask
tags:
- masked langauge model
- setswana
---
# PuoBertaJW300: A curated Setswana Language Model (trained on PuoData + JW300 Setswana)
[![Zenodo doi badge](https://img.shields.io/badge/DOI-10.5281%2Fzenodo.8434795-blue.svg)](https://doi.org/10.5281/zenodo.8434795) [![arXiv](https://img.shields.io/badge/arXiv-2310.09141-b31b1b.svg)](https://arxiv.org/abs/2310.09141) 🤗 [https://huggingface.co/dsfsi/PuoBERTa](https://huggingface.co/dsfsi/PuoBERTa)
A Roberta-based language model specially designed for Setswana, using the new PuoData dataset + JW300 corpora.
**NOTE**: If you are looking for the model without JW300, go to [https://huggingface.co/dsfsi/PuoBERTa](https://huggingface.co/dsfsi/PuoBERTa)
## Model Details
### Model Description
This is a masked language model trained on Setswana corpora, making it a valuable tool for a range of downstream applications from translation to content creation. It's powered by the PuoData dataset to ensure accuracy and cultural relevance.
- **Developed by:** Vukosi Marivate ([@vukosi](https://huggingface.co/@vukosi)), Moseli Mots'Oehli ([@MoseliMotsoehli](https://huggingface.co/@MoseliMotsoehli)) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai
- **Model type:** RoBERTa Model
- **Language(s) (NLP):** Setswana
- **License:** CC BY 4.0
### Usage
Use this model filling in masks or finetune for downstream tasks. Here’s a simple example for masked prediction:
```python
from transformers import RobertaTokenizer, RobertaModel
# Load model and tokenizer
model = RobertaModel.from_pretrained('dsfsi/PuoBERTaJW300')
tokenizer = RobertaTokenizer.from_pretrained('dsfsi/PuoBERTaJW300')
```
### Downstream Use
## Downstream Performance
### Daily News Dikgang
Learn more about the dataset in the [Dataset Folder](daily-news-dikgang)
| **Model** | **5-fold Cross Validation F1** | **Test F1** |
|-----------------------------|--------------------------------------|-------------------|
| Logistic Regression + TFIDF | 60.1 | 56.2 |
| NCHLT TSN RoBERTa | 64.7 | 60.3 |
| PuoBERTa | **63.8** | **62.9** |
| PuoBERTaJW300 | 66.2 | 65.4 |
Downstream News Categorisation model 🤗 [https://huggingface.co/dsfsi/PuoBERTa-News](https://huggingface.co/dsfsi/PuoBERTa-News)
### MasakhaPOS
Performance of models on the MasakhaPOS downstream task.
| Model | Test Performance |
|---|---|
| **Multilingual Models** | |
| AfroLM | 83.8 |
| AfriBERTa | 82.5 |
| AfroXLMR-base | 82.7 |
| AfroXLMR-large | 83.0 |
| **Monolingual Models** | |
| NCHLT TSN RoBERTa | 82.3 |
| PuoBERTa | **83.4** |
| PuoBERTa+JW300 | 84.1 |
Downstream POS model 🤗 [https://huggingface.co/dsfsi/PuoBERTa-POS](https://huggingface.co/dsfsi/PuoBERTa-POS)
### MasakhaNER
Performance of models on the MasakhaNER downstream task.
| Model | Test Performance (f1 score) |
|---|---|
| **Multilingual Models** | |
| AfriBERTa | 83.2 |
| AfroXLMR-base | 87.7 |
| AfroXLMR-large | 89.4 |
| **Monolingual Models** | |
| NCHLT TSN RoBERTa | 74.2 |
| PuoBERTa | **78.2** |
| PuoBERTa+JW300 | 80.2 |
Downstream NER model 🤗 [https://huggingface.co/dsfsi/PuoBERTa-NER](https://huggingface.co/dsfsi/PuoBERTa-NER)
## Pre-Training Dataset
We used the PuoData dataset, a rich source of Setswana text, ensuring that our model is well-trained and culturally attuned.
[Github](https://github.com/dsfsi/PuoData), 🤗 [https://huggingface.co/datasets/dsfsi/PuoData](https://huggingface.co/datasets/dsfsi/PuoData)
## Citation Information
Bibtex Reference
```
@inproceedings{marivate2023puoberta,
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana},
author = {Vukosi Marivate and Moseli Mots'Oehli and Valencia Wagner and Richard Lastrucci and Isheanesu Dzingirai},
year = {2023},
booktitle= {Artificial Intelligence Research. SACAIR 2023. Communications in Computer and Information Science},
url= {https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17},
keywords = {NLP},
preprint_url = {https://arxiv.org/abs/2310.09141},
dataset_url = {https://github.com/dsfsi/PuoBERTa},
software_url = {https://huggingface.co/dsfsi/PuoBERTa}
}
```
## Contributing
Your contributions are welcome! Feel free to improve the model.
## Model Card Authors
Vukosi Marivate
## Model Card Contact
For more details, reach out or check our [website](https://dsfsi.github.io/).
Email: [email protected]
**Enjoy exploring Setswana through AI!**