metadata
library_name: peft
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5981d3ad-273d-4654-ac2a-1505f39265e5
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cdb41d125efc324c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cdb41d125efc324c_train_data.json
type:
field_input: text
field_instruction: query
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/5981d3ad-273d-4654-ac2a-1505f39265e5
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/cdb41d125efc324c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5981d3ad-273d-4654-ac2a-1505f39265e5
wandb_project: Gradients-On-Demand
wandb_runid: 5981d3ad-273d-4654-ac2a-1505f39265e5
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
5981d3ad-273d-4654-ac2a-1505f39265e5
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4752 | 0.0000 | 1 | 3.6806 |
2.5345 | 0.0001 | 3 | 3.6822 |
2.5842 | 0.0002 | 6 | 3.6796 |
2.3758 | 0.0003 | 9 | 3.6679 |
3.1233 | 0.0004 | 12 | 3.6322 |
3.0729 | 0.0005 | 15 | 3.5695 |
3.3151 | 0.0006 | 18 | 3.4620 |
2.8179 | 0.0007 | 21 | 3.2984 |
2.7142 | 0.0008 | 24 | 3.1075 |
2.7692 | 0.0009 | 27 | 2.9502 |
2.3591 | 0.0011 | 30 | 2.8001 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1