librarian-bot's picture
Librarian Bot: Add base_model information to model
5feb6f5
|
raw
history blame
2.22 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - germa_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-german-cased
model-index:
  - name: bert-base-german-cased-fine-tuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: germa_ner
          type: germa_ner
          args: default
        metrics:
          - type: precision
            value: 0.8089260808926081
            name: Precision
          - type: recall
            value: 0.872836719337848
            name: Recall
          - type: f1
            value: 0.8396670285921101
            name: F1
          - type: accuracy
            value: 0.9748511630761677
            name: Accuracy

bert-base-german-cased-fine-tuned-ner

This model is a fine-tuned version of bert-base-german-cased on the germa_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0966
  • Precision: 0.8089
  • Recall: 0.8728
  • F1: 0.8397
  • Accuracy: 0.9749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.159 1.0 737 0.0922 0.7472 0.8461 0.7936 0.9703
0.0714 2.0 1474 0.0916 0.7886 0.8713 0.8279 0.9731
0.0319 3.0 2211 0.0966 0.8089 0.8728 0.8397 0.9749

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.9.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1