domenicrosati's picture
update model card README.md
d67265d
|
raw
history blame
2.53 kB
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - snli
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-contradiction
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: snli
          type: snli
          args: plain_text
        metrics:
          - name: Rouge1
            type: rouge
            value: 34.3503

t5-small-finetuned-contradiction

This model is a fine-tuned version of domenicrosati/t5-small-finetuned-contradiction on the snli dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0662
  • Rouge1: 34.3503
  • Rouge2: 14.671
  • Rougel: 32.5398
  • Rougelsum: 32.5331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.0071 1.0 2863 2.1018 34.4519 14.6277 32.6441 32.6415
2.0704 2.0 5726 2.0897 34.4688 14.7508 32.6253 32.6227
2.0738 3.0 8589 2.0808 34.4291 14.5548 32.6263 32.6384
2.0788 4.0 11452 2.0744 34.6759 14.842 32.8169 32.823
2.0781 5.0 14315 2.0714 34.4961 14.7307 32.6362 32.6378
2.0687 6.0 17178 2.0674 34.6406 14.8359 32.8403 32.8423
2.0627 7.0 20041 2.0671 34.526 14.6943 32.6919 32.694
2.0585 8.0 22904 2.0662 34.4196 14.7107 32.607 32.6035

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.0
  • Tokenizers 0.12.1