Visualize in Weights & Biases

phi-3-mini-LoRA

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.0422 0.6024 100 0.9495
0.8992 1.2048 200 0.9344
0.8815 1.8072 300 0.9300
0.8884 2.4096 400 0.9286
0.8645 3.0120 500 0.9257
0.8637 3.6145 600 0.9261

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.4
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dohyung97022/phi-3-mini-LoRA

Adapter
(161)
this model