tst_lilt_xlm_ft / README.md
doc2txt's picture
End of training
af5d289 verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results: []

test

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6516
  • Precision: 0.7245
  • Recall: 0.7621
  • F1: 0.7428
  • Accuracy: 0.7700

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 100 0.9064 0.4989 0.6694 0.5717 0.6558
No log 2.67 200 0.9830 0.5946 0.5986 0.5966 0.6988
No log 4.0 300 0.8347 0.6432 0.6943 0.6678 0.7418
No log 5.33 400 0.8003 0.6759 0.7341 0.7038 0.7710
0.6429 6.67 500 0.9784 0.6887 0.7336 0.7104 0.7645
0.6429 8.0 600 0.9918 0.7099 0.7529 0.7308 0.7565
0.6429 9.33 700 1.1164 0.7102 0.7264 0.7182 0.7528
0.6429 10.67 800 1.3786 0.6997 0.7621 0.7296 0.7429
0.6429 12.0 900 1.2818 0.7168 0.7529 0.7344 0.7617
0.106 13.33 1000 1.3933 0.7004 0.7407 0.7200 0.7465
0.106 14.67 1100 1.3226 0.7000 0.7641 0.7306 0.7653
0.106 16.0 1200 1.5013 0.7166 0.7509 0.7333 0.7508
0.106 17.33 1300 1.4213 0.7165 0.7427 0.7294 0.7732
0.106 18.67 1400 1.4495 0.7144 0.7366 0.7254 0.7722
0.0248 20.0 1500 1.5319 0.7226 0.7326 0.7275 0.7717
0.0248 21.33 1600 1.5563 0.7232 0.7626 0.7424 0.7731
0.0248 22.67 1700 1.5967 0.7364 0.7657 0.7507 0.7734
0.0248 24.0 1800 1.5916 0.7375 0.7616 0.7494 0.7773
0.0248 25.33 1900 1.6402 0.7267 0.7504 0.7383 0.7719
0.0069 26.67 2000 1.6516 0.7250 0.7575 0.7409 0.7688
0.0069 28.0 2100 1.6539 0.7262 0.7621 0.7437 0.7697
0.0069 29.33 2200 1.6516 0.7245 0.7621 0.7428 0.7700

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1