doc2txt's picture
End of training
ae80e69 verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: tst_lilt_cord_xlm_ft
    results: []

tst_lilt_cord_xlm_ft

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2024
  • Precision: 0.9578
  • Recall: 0.9555
  • F1: 0.9567
  • Accuracy: 0.9657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.25 100 0.4066 0.8691 0.8544 0.8617 0.8774
No log 0.5 200 0.3936 0.8724 0.8633 0.8678 0.8820
No log 0.75 300 0.4283 0.8802 0.8794 0.8798 0.8902
No log 1.0 400 0.2634 0.9326 0.9183 0.9254 0.9419
0.3486 1.25 500 0.2464 0.9143 0.9150 0.9147 0.9401
0.3486 1.5 600 0.2368 0.9296 0.9296 0.9296 0.9460
0.3486 1.75 700 0.2537 0.9434 0.9442 0.9438 0.9552
0.3486 2.0 800 0.2233 0.9504 0.9466 0.9485 0.9552
0.3486 2.25 900 0.2449 0.9482 0.9482 0.9482 0.9593
0.1869 2.5 1000 0.2214 0.9540 0.9555 0.9547 0.9611
0.1869 2.75 1100 0.2304 0.9352 0.9337 0.9344 0.9446
0.1869 3.0 1200 0.2748 0.9432 0.9401 0.9417 0.9520
0.1869 3.25 1300 0.2104 0.9460 0.9490 0.9475 0.9579
0.1869 3.5 1400 0.2379 0.9496 0.9458 0.9477 0.9597
0.1043 3.75 1500 0.2067 0.9466 0.9466 0.9466 0.9579
0.1043 4.0 1600 0.2025 0.9562 0.9547 0.9555 0.9634
0.1043 4.25 1700 0.2082 0.9514 0.9506 0.9510 0.9602
0.1043 4.5 1800 0.1942 0.9547 0.9555 0.9551 0.9666
0.1043 4.75 1900 0.2007 0.9532 0.9547 0.9539 0.9652
0.0574 5.0 2000 0.2024 0.9578 0.9555 0.9567 0.9657

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1