tst_fine-tuning-lilt2

This model is a fine-tuned version of doc2txt/lilt_roberta_like_en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.4439
  • Answer: {'precision': 0.14533622559652928, 'recall': 0.2460220318237454, 'f1': 0.18272727272727274, 'number': 817}
  • Header: {'precision': 0.033482142857142856, 'recall': 0.12605042016806722, 'f1': 0.05291005291005291, 'number': 119}
  • Question: {'precision': 0.27887323943661974, 'recall': 0.4596100278551532, 'f1': 0.34712482468443195, 'number': 1077}
  • Overall Precision: 0.1972
  • Overall Recall: 0.3532
  • Overall F1: 0.2531
  • Overall Accuracy: 0.4392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3672 10.53 200 1.6951 {'precision': 0.11161290322580646, 'recall': 0.211750305997552, 'f1': 0.14617659484579637, 'number': 817} {'precision': 0.0498220640569395, 'recall': 0.11764705882352941, 'f1': 0.06999999999999999, 'number': 119} {'precision': 0.26964933494558646, 'recall': 0.4141132776230269, 'f1': 0.32662028560966677, 'number': 1077} 0.1816 0.3145 0.2303 0.4331
0.4121 21.05 400 2.9692 {'precision': 0.12375621890547264, 'recall': 0.24357405140758873, 'f1': 0.16412371134020617, 'number': 817} {'precision': 0.023622047244094488, 'recall': 0.07563025210084033, 'f1': 0.036, 'number': 119} {'precision': 0.26241534988713316, 'recall': 0.43175487465181056, 'f1': 0.3264303264303264, 'number': 1077} 0.1789 0.3343 0.2331 0.4366
0.0862 31.58 600 4.0881 {'precision': 0.1258692628650904, 'recall': 0.2215422276621787, 'f1': 0.1605321507760532, 'number': 817} {'precision': 0.020833333333333332, 'recall': 0.07563025210084033, 'f1': 0.032667876588021776, 'number': 119} {'precision': 0.26891220320265047, 'recall': 0.4521819870009285, 'f1': 0.3372576177285318, 'number': 1077} 0.1839 0.3363 0.2378 0.4278
0.0334 42.11 800 4.5480 {'precision': 0.11213626685592619, 'recall': 0.193390452876377, 'f1': 0.14195867026055706, 'number': 817} {'precision': 0.021691973969631236, 'recall': 0.08403361344537816, 'f1': 0.034482758620689655, 'number': 119} {'precision': 0.2576306259699948, 'recall': 0.4623955431754875, 'f1': 0.33089700996677734, 'number': 1077} 0.1751 0.3308 0.2290 0.4257
0.0171 52.63 1000 4.8940 {'precision': 0.13886671987230648, 'recall': 0.21297429620563035, 'f1': 0.1681159420289855, 'number': 817} {'precision': 0.026217228464419477, 'recall': 0.11764705882352941, 'f1': 0.042879019908116385, 'number': 119} {'precision': 0.2647058823529412, 'recall': 0.4596100278551532, 'f1': 0.335934848998982, 'number': 1077} 0.1868 0.3393 0.2409 0.4297
0.0101 63.16 1200 5.0531 {'precision': 0.13835701050030882, 'recall': 0.2741738066095471, 'f1': 0.18390804597701146, 'number': 817} {'precision': 0.024886877828054297, 'recall': 0.09243697478991597, 'f1': 0.0392156862745098, 'number': 119} {'precision': 0.2734418865805727, 'recall': 0.4521819870009285, 'f1': 0.34079776067179846, 'number': 1077} 0.1879 0.3587 0.2466 0.4270
0.0058 73.68 1400 5.2725 {'precision': 0.13805185704274703, 'recall': 0.24112607099143207, 'f1': 0.17557932263814616, 'number': 817} {'precision': 0.033707865168539325, 'recall': 0.12605042016806722, 'f1': 0.05319148936170213, 'number': 119} {'precision': 0.2645301466594242, 'recall': 0.4521819870009285, 'f1': 0.3337902673063742, 'number': 1077} 0.1883 0.3472 0.2441 0.4293
0.0029 84.21 1600 5.2656 {'precision': 0.13925822253324002, 'recall': 0.24357405140758873, 'f1': 0.17720391807658056, 'number': 817} {'precision': 0.043726235741444866, 'recall': 0.19327731092436976, 'f1': 0.07131782945736433, 'number': 119} {'precision': 0.2663316582914573, 'recall': 0.4428969359331476, 'f1': 0.33263598326359833, 'number': 1077} 0.1866 0.3472 0.2428 0.4289
0.0013 94.74 1800 5.4292 {'precision': 0.1434659090909091, 'recall': 0.24724602203182375, 'f1': 0.18157303370786518, 'number': 817} {'precision': 0.03333333333333333, 'recall': 0.13445378151260504, 'f1': 0.05342237061769616, 'number': 119} {'precision': 0.26543878656554715, 'recall': 0.45496750232126276, 'f1': 0.3352719808416011, 'number': 1077} 0.1896 0.3517 0.2464 0.4291
0.0006 105.26 2000 5.4360 {'precision': 0.14817572598659717, 'recall': 0.24357405140758873, 'f1': 0.18425925925925926, 'number': 817} {'precision': 0.03456221198156682, 'recall': 0.12605042016806722, 'f1': 0.054249547920433995, 'number': 119} {'precision': 0.2717271727172717, 'recall': 0.4586815227483751, 'f1': 0.3412780656303972, 'number': 1077} 0.1969 0.3517 0.2525 0.4365
0.0005 115.79 2200 5.4540 {'precision': 0.14905933429811866, 'recall': 0.2521419828641371, 'f1': 0.18735788994997726, 'number': 817} {'precision': 0.038817005545286505, 'recall': 0.17647058823529413, 'f1': 0.06363636363636363, 'number': 119} {'precision': 0.28058823529411764, 'recall': 0.4428969359331476, 'f1': 0.34353619013323733, 'number': 1077} 0.1943 0.3497 0.2498 0.4337
0.0003 126.32 2400 5.4439 {'precision': 0.14533622559652928, 'recall': 0.2460220318237454, 'f1': 0.18272727272727274, 'number': 817} {'precision': 0.033482142857142856, 'recall': 0.12605042016806722, 'f1': 0.05291005291005291, 'number': 119} {'precision': 0.27887323943661974, 'recall': 0.4596100278551532, 'f1': 0.34712482468443195, 'number': 1077} 0.1972 0.3532 0.2531 0.4392

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
15
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for doc2txt/tst_fine-tuning-lilt2

Finetuned
(1)
this model