This is a new kind of model optimization.

A paper on the technique is currently being written.

This research was supported with hardware from the appliedAI Institute, whose goal is to generate and communicate high-quality knowledge about trustworthy AI.

Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "dnhkng/RYS-XLarge",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("dnhkng/RYS-XLarge")

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

ADVERTISING BREAK

Iโ€™m on the hunt for new challenges and a chance to dive into some exciting research opportunities. Oh, and did I mention I just snagged a top spot on the Open LLM leaderboard? ๐ŸŽ‰

Profile

Innovation enthusiast, AI strategist, and interdisciplinary-tech nerd โ€“ that's me! With over a decade of experience in research and project management, my professional journey has been largely shaped by my passion for artificial intelligence and its potential to transform various industries. With a solid background in artificial intelligence and machine learning, coupled with a knack for innovation and problem-solving (and a healthy dose of curiosity), I'm excited to bring my skills to a new team.

Originally from Australia, where I earned my degrees in Organic Chemistry and Biochemistry, I moved to Germany in 2004. My academic pursuit continued with a PhD in Chemistry at the Max Planck Institute of Biochemistry. Today, I leverage my robust educational background and diverse industry experience to drive AI innovations in a wide range of applications. Hobbies? Lots: I've also built the world's most powerful espresso machine and am working to bring GLaDOS to life.


I'm based out of Munich, Germany, but I would be interested in working remotely for a team with more compute than my 2x 4090s ๐Ÿš€

Reach out via LinkedIn - Dr David Noel Ng

Downloads last month
29
Safetensors
Model size
104B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.