metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_7_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luganda-CV-train-validation-7.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_7_0
type: common_voice_7_0
config: lg
split: test
args: lg
metrics:
- name: Wer
type: wer
value: 0.18224972173115955
w2v-bert-2.0-luganda-CV-train-validation-7.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_7_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2122
- Wer: 0.1822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.31 | 1.89 | 300 | 0.2527 | 0.2845 |
0.112 | 3.77 | 600 | 0.2177 | 0.2326 |
0.0698 | 5.66 | 900 | 0.2085 | 0.2127 |
0.0426 | 7.55 | 1200 | 0.2024 | 0.1941 |
0.0272 | 9.43 | 1500 | 0.2122 | 0.1822 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2