dmusingu's picture
End of training
e1559c5 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-Swahili-CV-train-8.0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.17621560728323557

w2v-bert-2.0-Swahili-CV-train-8.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.1762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3054 1.95 300 inf 0.1116
0.1079 3.91 600 inf 0.1036
0.0821 5.86 900 inf 0.0918
0.0959 7.82 1200 inf 0.2150
0.3709 9.77 1500 inf 0.1762

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2