stt-test-1223 / README.md
djdhyun-gglabs's picture
End of training
08bb94b verified
|
raw
history blame
1.74 kB
metadata
language:
  - ko
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - gglabs/stt-test-1223
metrics:
  - wer
model-index:
  - name: Whisper Small ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: custom
          type: gglabs/stt-test-1223
          args: 'config: ko, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 55.97826086956522

Whisper Small ko

This model is a fine-tuned version of openai/whisper-small on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5115
  • Wer: 55.9783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0506 0.2 10 1.5115 55.9783

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1