djamina's picture
Update README.md
3a199ac verified
metadata
base_model: camembert/camembert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: relatives_psr-cbert_finetuned
    results: []
datasets:
  - djamina/relatives_psr
language:
  - fr
pipeline_tag: token-classification

relatives_psr-cbert_finetuned

This model is a fine-tuned version of camembert/camembert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0532
  • Precision: 0.6127
  • Recall: 0.5628
  • F1: 0.5835
  • Accuracy: 0.9789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 49 0.1420 0.9906 0.3333 0.3286 0.9718
No log 2.0 98 0.0846 0.7921 0.6010 0.5037 0.9733
No log 3.0 147 0.0590 0.6117 0.5888 0.5891 0.9782
No log 4.0 196 0.0555 0.6077 0.6158 0.5861 0.9794
No log 5.0 245 0.0532 0.6127 0.5628 0.5835 0.9789

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1