File size: 3,345 Bytes
26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db 26e5af8 5a3f6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
base_model: diwank/cryptgpt-large
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cryptgpt-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# See:
# - https://github.com/karpathy/nanoGPT/blob/master/config/train_gpt2.py#L1
# - https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/tiny-llama/pretrain.yml#L14
# - https://github.com/karpathy/nanoGPT/blob/master/train.py#L35
base_model: diwank/cryptgpt-large
hub_model_id: diwank/cryptgpt-large
model_type: GPT2LMHeadModel
tokenizer_type: AutoTokenizer
trust_remote_code: true # required for CryptGPTTokenizer
resize_token_embeddings_to_32x: true
output_dir: ./outputs/model-out
datasets:
- path: diwank/encrypted-openwebtext
type: completion
dataset_prepared_path: ./cryptgpt-prepared-dataset
val_set_size: 0.04
shuffle_merged_datasets: false
sequence_len: 1024
pad_to_sequence_len: true
sample_packing: false
pretrain_multipack_attn: false
train_on_inputs: true
gradient_accumulation_steps: 1
micro_batch_size: 128
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.95
seed: 42
lr_scheduler: cosine
learning_rate: 6e-4
cosine_min_lr_ratio: 0.1 # min: 6e-5
weight_decay: 0.15
bf16: auto
tf32: true
flash_attention: true
torch_compile: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
deepspeed: deepspeed_configs/zero2.json
epochs: 20 # overriden by max_steps
max_steps: 600000
eval_steps: 12000
save_steps: 12000
save_total_limit: 3
early_stopping_patience: 3
auto_resume_from_checkpoints: true
logging_steps: 1
eval_max_new_tokens: 128
eval_causal_lm_metrics:
- sacrebleu
wandb_project: cryptgpt-large-0.1
wandb_name: cryptgpt-large-run-04
```
</details><br>
# cryptgpt-large
This model is a fine-tuned version of [diwank/cryptgpt-large](https://huggingface.co/diwank/cryptgpt-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8034
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 20456
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 15.7656 | 0.0000 | 1 | 15.4910 |
| 1.8545 | 0.5866 | 12000 | 1.8034 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|