Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# See:
# - https://github.com/karpathy/nanoGPT/blob/master/config/train_gpt2.py#L1
# - https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/tiny-llama/pretrain.yml#L14
# - https://github.com/karpathy/nanoGPT/blob/master/train.py#L35

base_model: diwank/cryptgpt-large
hub_model_id: diwank/cryptgpt-large

model_type: GPT2LMHeadModel
tokenizer_type: AutoTokenizer
trust_remote_code: true  # required for CryptGPTTokenizer
resize_token_embeddings_to_32x: true
output_dir: ./outputs/model-out

datasets:
  - path: diwank/encrypted-openwebtext
    type: completion

dataset_prepared_path: ./cryptgpt-prepared-dataset
val_set_size: 0.04
shuffle_merged_datasets: false

sequence_len: 1024
pad_to_sequence_len: true
sample_packing: false
pretrain_multipack_attn: false
train_on_inputs: true

gradient_accumulation_steps: 1
micro_batch_size: 128
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.95
seed: 42

lr_scheduler: cosine
learning_rate: 6e-4
cosine_min_lr_ratio: 0.1  # min: 6e-5
weight_decay: 0.15

bf16: auto
tf32: true
flash_attention: true
torch_compile: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true

deepspeed: deepspeed_configs/zero2.json

epochs: 20  # overriden by max_steps
max_steps: 600000
eval_steps: 12000
save_steps: 12000
save_total_limit: 3
early_stopping_patience: 3
auto_resume_from_checkpoints: true
logging_steps: 1
eval_max_new_tokens: 128
eval_causal_lm_metrics: 
  - sacrebleu

wandb_project: cryptgpt-large-0.1
wandb_name: cryptgpt-large-run-04

cryptgpt-large

This model is a fine-tuned version of diwank/cryptgpt-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 20456

Training results

Training Loss Epoch Step Validation Loss
15.7656 0.0000 1 15.4910
1.8545 0.5866 12000 1.8034

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
31
Safetensors
Model size
838M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for diwank/cryptgpt-large

Unable to build the model tree, the base model loops to the model itself. Learn more.