dipteshkanojia's picture
Librarian Bot: Add base_model information to model (#1)
6c5d6a4
metadata
license: cc-by-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: l3cube-pune/hing-roberta
model-index:
  - name: hing-roberta-CM-run-3
    results: []

hing-roberta-CM-run-3

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6968
  • Accuracy: 0.7565
  • Precision: 0.7045
  • Recall: 0.7064
  • F1: 0.7050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8232 1.0 497 0.7145 0.6620 0.6319 0.6585 0.6167
0.5799 2.0 994 0.7155 0.7203 0.6718 0.6928 0.6672
0.4152 3.0 1491 0.8823 0.7485 0.6962 0.7136 0.7022
0.2657 4.0 1988 1.4502 0.7465 0.6945 0.7037 0.6968
0.16 5.0 2485 2.0667 0.7465 0.6890 0.6827 0.6855
0.0945 6.0 2982 2.0120 0.7565 0.7091 0.7159 0.7103
0.0802 7.0 3479 2.2426 0.7686 0.7253 0.7065 0.7088
0.059 8.0 3976 2.3472 0.7425 0.6844 0.6881 0.6861
0.041 9.0 4473 2.4801 0.7666 0.7258 0.7144 0.7145
0.0307 10.0 4970 2.6317 0.7545 0.7102 0.7021 0.7019
0.0471 11.0 5467 2.4626 0.7364 0.6836 0.6780 0.6788
0.0282 12.0 5964 2.3949 0.7586 0.7067 0.7108 0.7087
0.0267 13.0 6461 2.4750 0.7465 0.6938 0.6921 0.6921
0.0274 14.0 6958 2.5942 0.7565 0.7022 0.7062 0.7039
0.0212 15.0 7455 2.6728 0.7404 0.6851 0.6893 0.6867
0.026 16.0 7952 2.6683 0.7565 0.7064 0.7122 0.7085
0.0175 17.0 8449 2.6646 0.7505 0.7030 0.7087 0.7039
0.0126 18.0 8946 2.6948 0.7565 0.7021 0.7039 0.7030
0.0065 19.0 9443 2.6984 0.7565 0.7045 0.7064 0.7050
0.0103 20.0 9940 2.6968 0.7565 0.7045 0.7064 0.7050

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1