din0s's picture
update model card README.md
6346277
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: t5-small-finetuned-en-to-it-hrs
    results: []

t5-small-finetuned-en-to-it-hrs

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1558
  • Bleu: 9.8991
  • Gen Len: 51.8287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
2.0084 1.0 1125 2.8804 4.4102 67.6067
1.7918 2.0 2250 2.7757 6.1959 58.0313
1.6944 3.0 3375 2.6845 6.9152 55.6953
1.5955 4.0 4500 2.6219 7.3056 54.8213
1.5304 5.0 5625 2.5659 7.9427 53.4173
1.52 6.0 6750 2.5249 8.2049 53.678
1.4934 7.0 7875 2.4853 8.6612 52.304
1.4518 8.0 9000 2.4522 8.7991 52.6467
1.4393 9.0 10125 2.4353 8.8251 52.7047
1.4196 10.0 11250 2.4027 9.01 52.5387
1.405 11.0 12375 2.3797 9.1513 52.0273
1.3741 12.0 13500 2.3590 9.2401 52.3373
1.3693 13.0 14625 2.3378 9.3611 52.1507
1.3638 14.0 15750 2.3226 9.4213 52.2813
1.3366 15.0 16875 2.3071 9.5199 52.1507
1.3294 16.0 18000 2.2943 9.5296 51.9587
1.3258 17.0 19125 2.2788 9.6231 51.5807
1.3152 18.0 20250 2.2693 9.6586 51.8933
1.3023 19.0 21375 2.2543 9.6762 51.5733
1.3061 20.0 22500 2.2451 9.6926 51.6727
1.3004 21.0 23625 2.2344 9.773 51.6527
1.2839 22.0 24750 2.2242 9.7973 51.8113
1.2869 23.0 25875 2.2161 9.8177 51.9073
1.2819 24.0 27000 2.2115 9.8183 51.6707
1.2642 25.0 28125 2.2037 9.7645 52.0853
1.2685 26.0 29250 2.1984 9.7764 51.6927
1.2609 27.0 30375 2.1934 9.7205 51.9647
1.2585 28.0 31500 2.1834 9.8116 51.7373
1.2564 29.0 32625 2.1811 9.8547 51.8553
1.2563 30.0 33750 2.1766 9.8346 51.7293
1.258 31.0 34875 2.1748 9.8204 51.6747
1.2391 32.0 36000 2.1708 9.8485 51.7647
1.2364 33.0 37125 2.1644 9.8503 51.6713
1.2436 34.0 38250 2.1629 9.8457 51.76
1.2408 35.0 39375 2.1614 9.8899 51.6893
1.2564 36.0 40500 2.1591 9.8867 51.706
1.2318 37.0 41625 2.1575 9.866 51.782
1.2423 38.0 42750 2.1570 9.8756 51.8933
1.2399 39.0 43875 2.1558 9.8871 51.7967
1.2339 40.0 45000 2.1558 9.8991 51.8287

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1
  • Datasets 2.5.1
  • Tokenizers 0.11.0