bart-pt-asqa-ob / README.md
din0s's picture
update model card README.md
00ad100
|
raw
history blame
1.72 kB
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: bart-pt-asqa-ob
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-pt-asqa-ob
This model is a fine-tuned version of [vblagoje/bart_lfqa](https://huggingface.co/vblagoje/bart_lfqa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6901
- Rougelsum: 20.7527
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| No log | 1.0 | 355 | 1.6295 | 17.7502 |
| 1.6407 | 2.0 | 710 | 1.6144 | 18.5897 |
| 1.4645 | 3.0 | 1065 | 1.6222 | 19.3778 |
| 1.4645 | 4.0 | 1420 | 1.6522 | 19.6941 |
| 1.3678 | 5.0 | 1775 | 1.6528 | 20.3110 |
| 1.2671 | 6.0 | 2130 | 1.6879 | 20.6112 |
| 1.2671 | 7.0 | 2485 | 1.6901 | 20.7527 |
### Framework versions
- Transformers 4.23.0.dev0
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1