See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 823d37b8588de3b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/823d37b8588de3b9_train_data.json
type:
field_input: question
field_instruction: problem
field_output: solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dimasik87/de33f694-50e1-4884-8566-140c2e9ee8b8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 1
mlflow_experiment_name: /tmp/823d37b8588de3b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2028
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: de33f694-50e1-4884-8566-140c2e9ee8b8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: de33f694-50e1-4884-8566-140c2e9ee8b8
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
de33f694-50e1-4884-8566-140c2e9ee8b8
This model is a fine-tuned version of NousResearch/Hermes-2-Pro-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9466 | 0.0001 | 1 | 1.1514 |
0.886 | 0.0004 | 4 | 1.0636 |
0.6905 | 0.0007 | 8 | 0.6157 |
0.3233 | 0.0011 | 12 | 0.2960 |
0.1823 | 0.0015 | 16 | 0.2611 |
0.1479 | 0.0018 | 20 | 0.2346 |
0.2695 | 0.0022 | 24 | 0.2255 |
0.1645 | 0.0025 | 28 | 0.2141 |
0.1804 | 0.0029 | 32 | 0.2088 |
0.2318 | 0.0033 | 36 | 0.2063 |
0.1563 | 0.0036 | 40 | 0.2020 |
0.1512 | 0.0040 | 44 | 0.2004 |
0.1529 | 0.0044 | 48 | 0.2001 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for dimasik87/de33f694-50e1-4884-8566-140c2e9ee8b8
Base model
NousResearch/Meta-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Pro-Llama-3-8B