Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: princeton-nlp/Sheared-LLaMA-1.3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d31d6beaef41099a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d31d6beaef41099a_train_data.json
  type:
    field_input: industry_sector
    field_instruction: text
    field_output: code
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik87/7223749c-54e9-450b-b315-c025abcf4efe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d31d6beaef41099a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7223749c-54e9-450b-b315-c025abcf4efe
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7223749c-54e9-450b-b315-c025abcf4efe
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

7223749c-54e9-450b-b315-c025abcf4efe

This model is a fine-tuned version of princeton-nlp/Sheared-LLaMA-1.3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0003 1 nan
0.0 0.0015 5 nan
0.0 0.0031 10 nan
0.0 0.0046 15 nan
0.0 0.0062 20 nan
0.0 0.0077 25 nan
0.0 0.0093 30 nan
0.0 0.0108 35 nan
0.0 0.0123 40 nan
0.0 0.0139 45 nan
0.0 0.0154 50 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
19
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dimasik87/7223749c-54e9-450b-b315-c025abcf4efe

Adapter
(48)
this model