|
--- |
|
license: mit |
|
library_name: diffusers |
|
pipeline_tag: image-to-image |
|
--- |
|
|
|
# DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation |
|
|
|
SIGGRAPH 2024 |
|
|
|
- Project Page: https://dilightnet.github.io/ |
|
- Paper: https://arxiv.org/abs/2402.11929 |
|
- Full Usage: please check https://github.com/iamNCJ/DiLightNet |
|
|
|
Example Usage: |
|
|
|
```python |
|
from diffusers.utils import get_class_from_dynamic_module |
|
NeuralTextureControlNetModel = get_class_from_dynamic_module( |
|
"dilightnet/model_helpers", |
|
"neuraltexture_controlnet.py", |
|
"NeuralTextureControlNetModel" |
|
) |
|
neuraltexture_controlnet = NeuralTextureControlNetModel.from_pretrained("DiLightNet/DiLightNet") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", controlnet=neuraltexture_controlnet, |
|
) |
|
cond_image = torch.randn((1, 16, 512, 512)) |
|
image = pipe("some text prompt", image=cond_image).images[0] |
|
``` |