|
|
|
|
|
|
|
|
|
|
|
from logging import PlaceHolder |
|
import math |
|
import os |
|
import sys |
|
import traceback |
|
import copy |
|
import numpy as np |
|
import modules.scripts as scripts |
|
import gradio as gr |
|
|
|
|
|
from modules import images,processing |
|
from modules.processing import process_images, Processed |
|
from modules.processing import Processed |
|
from modules.shared import opts, cmd_opts, state |
|
class Script(scripts.Script): |
|
def run(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle): |
|
return self.runBasic(p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle) |
|
|
|
|
|
|
|
|
|
def show(self, is_img2img): |
|
self.isAdvanced=False |
|
return True |
|
def title(self): |
|
return "CFG Scheduling" if (self.isAdvanced) else "CFG Auto" |
|
|
|
def uiAdvanced(self, is_img2img): |
|
|
|
placeholder="The steps on which to modify, in format step:value - example: 0:10 ; 10:15" |
|
n0 = gr.Textbox(label="CFG",placeholder=placeholder) |
|
placeholder="You can also use functions like: 0: math.fabs(-t) ; 1: (1-t/T) ; 2:=e ;3:t*d" |
|
n1 = gr.Textbox(label="ETA",placeholder=placeholder) |
|
|
|
|
|
n2 = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.5) |
|
with gr.Row(): |
|
loops=gr.Number(value=1,precision=0,label="loops") |
|
nSingle= gr.Checkbox(label="Loop returns one") |
|
|
|
return [n0,n1,n2 ,loops,nSingle] |
|
|
|
def uiAuto(self, is_img2img): |
|
self.autoOptions={"b1":"Blur First V1","b2":"Blur Last","f1":"Force at Start V1","f2":"Force Allover"} |
|
with gr.Row(): |
|
dns = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.25) |
|
n0=gr.Dropdown(list(self.autoOptions.values()),value=self.autoOptions["b1"],label="Scheduler") |
|
with gr.Row(): |
|
n1 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Strength', value=10) |
|
n2 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Strength', value=10) |
|
with gr.Row(): |
|
n3 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Range', value=10) |
|
n4 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Range', value=10) |
|
with gr.Row(): |
|
loops=gr.Number(value=1,precision=0,label="loops") |
|
nSingle= gr.Checkbox(label="Loop returns one") |
|
return [n0,dns, n1,n2,n3,n4 ,loops,nSingle] |
|
|
|
def ui(self, is_img2img): |
|
return self.uiAdvanced(is_img2img) if (self.isAdvanced) else self.uiAuto(is_img2img) |
|
|
|
def prepare(self,p,cfg,eta): |
|
sampler_name=p.sampler_name |
|
if not sampler_name: |
|
print("Warning: sampler not specified. Using Euler a") |
|
sampler_name="Euler a" |
|
|
|
if sampler_name in ('Euler a','Euler','LMS','DPM++ 2M','DPM fast','LMS Karras','DPM++ 2M Karras'): |
|
max_mul_count = p.steps * p.batch_size |
|
steps_per_mul = p.batch_size |
|
|
|
elif sampler_name in ('Heun','DPM2','DPM2 a','DPM++ 2S a','DPM2 Karras','DPM2 a Karras','DPM++ 2S a Karras'): |
|
max_mul_count = ((p.steps*2)-1) * p.batch_size |
|
steps_per_mul = 2 * p.batch_size |
|
|
|
elif sampler_name=='DDIM': |
|
max_mul_count = fix_ddim_step_count(p.steps) |
|
steps_per_mul = 1 |
|
|
|
elif sampler_name=='PLMS': |
|
max_mul_count = fix_ddim_step_count(p.steps)+1 |
|
steps_per_mul = 1 |
|
else: |
|
print("Not supported sampler", p.sampler_name, p.sampler_index) |
|
return |
|
|
|
|
|
|
|
|
|
|
|
self.p=p |
|
cfg=cfg.strip() |
|
eta=eta.strip() |
|
if cfg: |
|
p.cfg_scale=Fake_float(p.cfg_scale,self.split(cfg,str(p.cfg_scale)) , max_mul_count, steps_per_mul) |
|
|
|
if eta: |
|
if (eta.find("@")==-1): |
|
p.s_churn=p.eta =Fake_float(p.eta or 1,self.split(eta,str(p.eta)) , max_mul_count, steps_per_mul) |
|
|
|
|
|
|
|
else: |
|
eta=eta.split("@") |
|
if eta[0].strip()!="": |
|
p.s_churn=Fake_float(p.s_churn or 1,self.split(eta[0],str(p.s_churn)), max_mul_count, steps_per_mul) |
|
if len(eta)>1 and eta[1].strip()!="": |
|
p.s_noise=Fake_float(p.s_noise or 1,self.split(eta[1],str(p.s_noise)), max_mul_count, steps_per_mul) |
|
if len(eta)>2 and eta[2].strip()!="": |
|
p.s_tmin=Fake_float(p.s_tmin or 1,self.split(eta[2],str(p.s_tmin)), max_mul_count, steps_per_mul) |
|
if len(eta)>3 and eta[3].strip()!="": |
|
p.s_tmax=Fake_float(p.s_tmax or 1,self.split(eta[2],str(p.s_tmax)), max_mul_count, steps_per_mul) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def runBasic(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle): |
|
if(n0==self.autoOptions["b1"]): |
|
cfg=f"""0:{ns2}/2 if (t<T* (({nr1}/100)**2)) else cfg""" |
|
eta=f"""0:{ns1}+1 if (t<T*(({nr1}/100)**2) ) else e*({nr2}/50)""" |
|
elif(n0==self.autoOptions["f1"]): |
|
cfg=f"""0:({ns1}*4)*((1-d**0.5)**1.5)/(t*(30-cfg)/30+1)/(l*2+1) if (t<T*{nr1}/100) else 0.1 if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 7-d*7""" |
|
eta=f"""0:0.8+{ns2}/25-min(t*0.1, 0.8+{ns2}/25 -0.01) if (t<T*{nr1}/100) else {ns2}/(10*(1+l*0.5)) if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 1+e""" |
|
elif(n0==self.autoOptions["b2"]): |
|
cfg=f"""0:cfg if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns2}/10""" |
|
eta=f"""0:e if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns1}/10""" |
|
elif(n0==self.autoOptions["f2"]): |
|
cfg=f"""= min(40,max(0,cfg+x(t)*({ns2}-50)/2 )) """ |
|
eta=f"""0:(1-(t%(2+ 10-.1*{nr1} ))/ (2+10-.1*{nr1}) )*{ns1}*.1 * (e*(100-{nr2})+{nr2})*.01 """ |
|
self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2} |
|
return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle) |
|
|
|
|
|
def runAdvanced(self, p, cfg,eta,dns ,loops,nSingle): |
|
self.initSeed=p.seed |
|
|
|
loops = loops if (loops>0) else 1 |
|
|
|
batch_count=p.n_iter |
|
state.job_count = loops*p.n_iter |
|
p.denoising_strength=p.denoising_strength or (1 if (self.isAdvanced) else 0.2) |
|
initial_denoising_strength=p.denoising_strength |
|
p.do_not_save_grid = True |
|
if hasattr(p,"init_images"): |
|
original_init_image = p.init_images |
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] |
|
else: |
|
original_init_image=None |
|
|
|
all_images = [] |
|
cfgsi=" loops:"+str(loops)+" terget denoising: "+str(dns)+"\nCFG: "+cfg+"\nETA: "+eta+"\n" |
|
|
|
p.extra_generation_params = { |
|
"CFG Scheduler Info":cfgsi, |
|
} |
|
|
|
|
|
|
|
if (self.isAdvanced==False): |
|
self.cfgsib.update(p.extra_generation_params) |
|
p.extra_generation_params=self.cfgsib |
|
|
|
if loops>1: |
|
processing.fix_seed(p) |
|
|
|
|
|
for n in range(batch_count): |
|
proc=None |
|
history = [] |
|
p.denoising_strength=initial_denoising_strength |
|
if (original_init_image!=None): |
|
p.init_images=original_init_image |
|
for loop in range(loops): |
|
if opts.img2img_color_correction and original_init_image!=None: |
|
p.color_corrections = initial_color_corrections |
|
|
|
p.batch_size = 1 |
|
p.n_iter = 1 |
|
self.loop=loop |
|
self.prepare(p, cfg,eta) |
|
proc = process_images(p) |
|
if loop==0: |
|
self.initInfo=proc.info |
|
self.initSeed=proc.seed |
|
if len(proc.images)>0: |
|
history.append(proc.images[0]) |
|
p.seed+=1 |
|
p.init_images=[proc.images[0]] |
|
|
|
p.denoising_strength=initial_denoising_strength+(dns-initial_denoising_strength)*(loop+1)/(loops) |
|
else: |
|
break |
|
|
|
all_images += history |
|
if loops>0: |
|
p.seed=self.initSeed |
|
|
|
return proc if(nSingle) else Processed(p, all_images, self.initSeed, self.initInfo) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def peek(self,val): |
|
print(val) |
|
return val |
|
|
|
def split(self,src,default='0'): |
|
p=self.p |
|
self.P=copy.copy({ |
|
'cfg':float(str(p.cfg_scale)), |
|
'd':p.denoising_strength or 1, |
|
'l':self.loop, |
|
'min':min, |
|
'max':max, |
|
'abs':abs, |
|
'pow':pow, |
|
'pi':math.pi, |
|
'x':self._interpolate, |
|
'int':int, |
|
'floor':math.floor, |
|
'peek':self.peek, |
|
}) |
|
|
|
if src[0:4]=="eval": |
|
src="0:"+src[4:] |
|
if src[0]=="=": |
|
src="0:"+src[1:] |
|
|
|
|
|
while src[len(src)-1] in [";"," "]: |
|
src=src[0:len(src)-1] |
|
while src[0] in [";"," "]: |
|
src=src[1:] |
|
|
|
arr0 = src.split(';') |
|
|
|
|
|
arr=[] |
|
for j in arr0: |
|
|
|
v=j.split(":") |
|
q=v[0].split(",") |
|
|
|
for i in q: |
|
arr.append(i+":"+v[1]) |
|
|
|
|
|
|
|
|
|
arr.sort(key=self._sort) |
|
s=[] |
|
val=default |
|
for j in range(p.steps+1): |
|
i=0 |
|
while i<len(arr) and i<=j: |
|
v=arr[i].split(":") |
|
|
|
if math.floor(int(v[0]) if v[0].isnumeric() else float(v[0])*p.steps)==j: |
|
val=v[1].strip() |
|
break |
|
i=i+1 |
|
|
|
|
|
if val[0]=="=": |
|
val=val[1:] |
|
|
|
_eta=1-j/p.steps |
|
params={'t':j,'T':p.steps,'math':math,'p':p,'e':float(str(_eta))} |
|
|
|
params.update(copy.copy(self.P)) |
|
|
|
s.append(float(eval(val,params))) |
|
|
|
|
|
|
|
print(np.round(s,1),"\n") |
|
return s |
|
|
|
def _interpolate(self,v,start=0,end=None,m=1): |
|
end=end or self.p.steps |
|
v=min(max(v,start),end)-start |
|
return v*m/(end-start)+(1 if m<0 else 0) |
|
|
|
def _sort(self,a): |
|
_=a.split(":")[0] |
|
return math.floor(int(_) if (_.isnumeric()) else float(_)*self.p.steps) |
|
|
|
def evaluate (self,src): |
|
s=[] |
|
p=self.p |
|
T=self.p.steps |
|
for j in range(T+1): |
|
_eta=1-j/p.steps |
|
params={'t':j,'T':p.steps,'math':math,'p':p,'e':_eta} |
|
params.update(self.P) |
|
s.append(float(eval(src,params))) |
|
return s |
|
|
|
class Fake_float(float): |
|
def __new__(self, value, arr, max_mul_count, steps_per_mul): |
|
return float.__new__(self, value) |
|
|
|
def __init__(self, value, arr, max_mul_count, steps_per_mul): |
|
float.__init__(value) |
|
self.arr = arr |
|
self.curstep = 0 |
|
|
|
|
|
|
|
|
|
self.max_mul_count = max_mul_count |
|
self.current_mul = 0 |
|
self.steps_per_mul = steps_per_mul |
|
self.current_step = 0 |
|
self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0) |
|
|
|
|
|
def __mul__(self,other): |
|
return self.fake_mul(other) |
|
|
|
def __rmul__(self,other): |
|
return self.fake_mul(other) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fake_mul(self,other): |
|
|
|
return self.get_fake_value(other) * other |
|
|
|
|
|
def get_fake_value(self,other): |
|
if (self.max_step_count==1): |
|
fake_value = self.arr[0] |
|
else: |
|
|
|
fake_value = self.arr[self.curstep] |
|
self.current_mul = (self.current_mul+1) % self.max_mul_count |
|
self.curstep = (self.current_mul) // self.steps_per_mul |
|
self.current_step+=1 |
|
return fake_value |
|
|
|
|
|
|
|
|
|
def fix_ddim_step_count(steps): |
|
valid_step = 999 / (1000 // steps) |
|
if valid_step == int(valid_step): steps=int(valid_step)+1 |
|
if ((1000 % steps)!=0): steps +=1 |
|
return steps |
|
|