ext2.0 / scripts /CFG Auto.py
dikdimon's picture
Upload scripts using SD-Hub extension
db57927 verified
#CFG Scheduler for Automatic1111 Stable Diffusion web-ui
#Author: https://github.com/guzuligo/
#Based on: https://github.com/tkalayci71/attenuate-cfg-scale
#Version: 1.81
from logging import PlaceHolder
import math
import os
import sys
import traceback
import copy
import numpy as np
import modules.scripts as scripts
import gradio as gr
#from modules.processing import Processed, process_images
from modules import images,processing
from modules.processing import process_images, Processed
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def run(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
return self.runBasic(p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle)
#def run(self,p,cfg,eta,dns ,loops,nSingle):
# return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
def show(self, is_img2img):
self.isAdvanced=False
return True
def title(self):
return "CFG Scheduling" if (self.isAdvanced) else "CFG Auto"
def uiAdvanced(self, is_img2img):
placeholder="The steps on which to modify, in format step:value - example: 0:10 ; 10:15"
n0 = gr.Textbox(label="CFG",placeholder=placeholder)
placeholder="You can also use functions like: 0: math.fabs(-t) ; 1: (1-t/T) ; 2:=e ;3:t*d"
n1 = gr.Textbox(label="ETA",placeholder=placeholder)
#loops
#n2 = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=1)
n2 = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.5)
with gr.Row():
loops=gr.Number(value=1,precision=0,label="loops")
nSingle= gr.Checkbox(label="Loop returns one")
return [n0,n1,n2 ,loops,nSingle]
#uiBasic
def uiAuto(self, is_img2img):
self.autoOptions={"b1":"Blur First V1","b2":"Blur Last","f1":"Force at Start V1","f2":"Force Allover"}
with gr.Row():
dns = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.25)
n0=gr.Dropdown(list(self.autoOptions.values()),value=self.autoOptions["b1"],label="Scheduler")
with gr.Row():
n1 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Strength', value=10)
n2 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Strength', value=10)
with gr.Row():
n3 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Range', value=10)
n4 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Range', value=10)
with gr.Row():
loops=gr.Number(value=1,precision=0,label="loops")
nSingle= gr.Checkbox(label="Loop returns one")
return [n0,dns, n1,n2,n3,n4 ,loops,nSingle]
def ui(self, is_img2img):
return self.uiAdvanced(is_img2img) if (self.isAdvanced) else self.uiAuto(is_img2img)
def prepare(self,p,cfg,eta):
sampler_name=p.sampler_name
if not sampler_name:
print("Warning: sampler not specified. Using Euler a")
sampler_name="Euler a"
#if p.sampler_index in (0,1,2,7,8,10,14):
if sampler_name in ('Euler a','Euler','LMS','DPM++ 2M','DPM fast','LMS Karras','DPM++ 2M Karras'):
max_mul_count = p.steps * p.batch_size
steps_per_mul = p.batch_size
#elif p.sampler_index in (3,4,5,6,11,12,13):
elif sampler_name in ('Heun','DPM2','DPM2 a','DPM++ 2S a','DPM2 Karras','DPM2 a Karras','DPM++ 2S a Karras'):
max_mul_count = ((p.steps*2)-1) * p.batch_size
steps_per_mul = 2 * p.batch_size
#elif p.sampler_index==15: # ddim
elif sampler_name=='DDIM': # ddim
max_mul_count = fix_ddim_step_count(p.steps)
steps_per_mul = 1
#elif p.sampler_index==16: # plms
elif sampler_name=='PLMS': # plms
max_mul_count = fix_ddim_step_count(p.steps)+1
steps_per_mul = 1
else:
print("Not supported sampler", p.sampler_name, p.sampler_index)
return # 9=dpm adaptive
#print("it is:",n0t)
#for x in range(int(n)):
self.p=p
cfg=cfg.strip()
eta=eta.strip()
if cfg:
p.cfg_scale=Fake_float(p.cfg_scale,self.split(cfg,str(p.cfg_scale)) , max_mul_count, steps_per_mul)
#p.cfg_scale.p=p
if eta:
if (eta.find("@")==-1):
p.s_churn=p.eta =Fake_float(p.eta or 1,self.split(eta,str(p.eta)) , max_mul_count, steps_per_mul)
#print(p.s_noise)
#Fake_float(p.s_churn or 1,self.split(eta,str(p.s_churn)), max_mul_count, steps_per_mul)
else:
eta=eta.split("@")
if eta[0].strip()!="":
p.s_churn=Fake_float(p.s_churn or 1,self.split(eta[0],str(p.s_churn)), max_mul_count, steps_per_mul)
if len(eta)>1 and eta[1].strip()!="":
p.s_noise=Fake_float(p.s_noise or 1,self.split(eta[1],str(p.s_noise)), max_mul_count, steps_per_mul)
if len(eta)>2 and eta[2].strip()!="":
p.s_tmin=Fake_float(p.s_tmin or 1,self.split(eta[2],str(p.s_tmin)), max_mul_count, steps_per_mul)
if len(eta)>3 and eta[3].strip()!="":
p.s_tmax=Fake_float(p.s_tmax or 1,self.split(eta[2],str(p.s_tmax)), max_mul_count, steps_per_mul)
#p.cfg_scale.p=p
#
def runBasic(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
if(n0==self.autoOptions["b1"]):
cfg=f"""0:{ns2}/2 if (t<T* (({nr1}/100)**2)) else cfg"""
eta=f"""0:{ns1}+1 if (t<T*(({nr1}/100)**2) ) else e*({nr2}/50)"""
elif(n0==self.autoOptions["f1"]):
cfg=f"""0:({ns1}*4)*((1-d**0.5)**1.5)/(t*(30-cfg)/30+1)/(l*2+1) if (t<T*{nr1}/100) else 0.1 if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 7-d*7"""
eta=f"""0:0.8+{ns2}/25-min(t*0.1, 0.8+{ns2}/25 -0.01) if (t<T*{nr1}/100) else {ns2}/(10*(1+l*0.5)) if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 1+e"""
elif(n0==self.autoOptions["b2"]):
cfg=f"""0:cfg if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns2}/10"""
eta=f"""0:e if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns1}/10"""
elif(n0==self.autoOptions["f2"]):
cfg=f"""= min(40,max(0,cfg+x(t)*({ns2}-50)/2 )) """
eta=f"""0:(1-(t%(2+ 10-.1*{nr1} ))/ (2+10-.1*{nr1}) )*{ns1}*.1 * (e*(100-{nr2})+{nr2})*.01 """
self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2}
return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
def runAdvanced(self, p, cfg,eta,dns ,loops,nSingle):
self.initSeed=p.seed
#loops=p.batch_size
loops = loops if (loops>0) else 1
batch_count=p.n_iter
state.job_count = loops*p.n_iter
p.denoising_strength=p.denoising_strength or (1 if (self.isAdvanced) else 0.2)
initial_denoising_strength=p.denoising_strength
p.do_not_save_grid = True
if hasattr(p,"init_images"):
original_init_image = p.init_images
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
else:
original_init_image=None
all_images = []
cfgsi=" loops:"+str(loops)+" terget denoising: "+str(dns)+"\nCFG: "+cfg+"\nETA: "+eta+"\n"
p.extra_generation_params = {
"CFG Scheduler Info":cfgsi,
}
#if basic, add basic info as well
if (self.isAdvanced==False):
self.cfgsib.update(p.extra_generation_params)
p.extra_generation_params=self.cfgsib
if loops>1:
processing.fix_seed(p)
#self.initDenoise=p.denoising_strength
for n in range(batch_count):
proc=None
history = []
p.denoising_strength=initial_denoising_strength
if (original_init_image!=None):
p.init_images=original_init_image
for loop in range(loops):
if opts.img2img_color_correction and original_init_image!=None:
p.color_corrections = initial_color_corrections
p.batch_size = 1
p.n_iter = 1
self.loop=loop
self.prepare(p, cfg,eta)
proc = process_images(p)
if loop==0:
self.initInfo=proc.info
self.initSeed=proc.seed
if len(proc.images)>0:
history.append(proc.images[0])
p.seed+=1
p.init_images=[proc.images[0]]
#p.denoising_strength=min(max(p.denoising_strength * dns, 0.05), 1)
p.denoising_strength=initial_denoising_strength+(dns-initial_denoising_strength)*(loop+1)/(loops)
else:#interrupted
break
#print("New denoising:"+str(p.denoising_strength)+"\n" )
all_images += history
if loops>0:#TODO:maybe this is not needed
p.seed=self.initSeed
#return proc if (loops==1 and p.batch_size==1) else Processed(p, all_images, self.initSeed, self.initInfo)
return proc if(nSingle) else Processed(p, all_images, self.initSeed, self.initInfo)
def peek(self,val):
print(val)
return val
def split(self,src,default='0'):
p=self.p
self.P=copy.copy({
'cfg':float(str(p.cfg_scale)),
'd':p.denoising_strength or 1,
'l':self.loop,
'min':min,
'max':max,
'abs':abs,
'pow':pow,
'pi':math.pi,
'x':self._interpolate,
'int':int,
'floor':math.floor,
'peek':self.peek,
})
if src[0:4]=="eval":
src="0:"+src[4:]
if src[0]=="=":
src="0:"+src[1:]
#clean up
while src[len(src)-1] in [";"," "]:
src=src[0:len(src)-1]
while src[0] in [";"," "]:
src=src[1:]
arr0 = src.split(';')##2
#resort array accounting for commas in indecies
arr=[]
for j in arr0:
#print(j)
v=j.split(":")
q=v[0].split(",")
for i in q:
arr.append(i+":"+v[1])
arr.sort(key=self._sort)
s=[]
val=default
for j in range(p.steps+1):
i=0
while i<len(arr) and i<=j:
v=arr[i].split(":")
#s=proc[j].n_iter
if math.floor(int(v[0]) if v[0].isnumeric() else float(v[0])*p.steps)==j:
val=v[1].strip()
break
i=i+1
#lets just evaluate all
if val[0]=="=":
val=val[1:]
_eta=1-j/p.steps
params={'t':j,'T':p.steps,'math':math,'p':p,'e':float(str(_eta))}
params.update(copy.copy(self.P))
#print(params)
s.append(float(eval(val,params)))
#end while loop
#else:
#s.append(float(val))
print(np.round(s,1),"\n")
return s
#limits a range of a value
def _interpolate(self,v,start=0,end=None,m=1):
end=end or self.p.steps
v=min(max(v,start),end)-start
return v*m/(end-start)+(1 if m<0 else 0)
def _sort(self,a):
_=a.split(":")[0]#splitter tester
return math.floor(int(_) if (_.isnumeric()) else float(_)*self.p.steps)
def evaluate (self,src):
s=[]
p=self.p
T=self.p.steps
for j in range(T+1):
_eta=1-j/p.steps
params={'t':j,'T':p.steps,'math':math,'p':p,'e':_eta}
params.update(self.P)
s.append(float(eval(src,params)))
return s
class Fake_float(float):
def __new__(self, value, arr, max_mul_count, steps_per_mul):
return float.__new__(self, value)
def __init__(self, value, arr, max_mul_count, steps_per_mul):
float.__init__(value)
self.arr = arr
self.curstep = 0
#self.p=p
#self.orig_value = orig_value
#self.target_value = target_value
self.max_mul_count = max_mul_count
self.current_mul = 0
self.steps_per_mul = steps_per_mul
self.current_step = 0 #fake
self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
def __mul__(self,other):
return self.fake_mul(other)
def __rmul__(self,other):
return self.fake_mul(other)
#def __add__(self,other):
#print("ADD!")
# return self.get_fake_value(other)+other
#def __sub__(self,other):
#print("SUB!")
# return self.get_fake_value(other)-other
def fake_mul(self,other):
#print("MUL!")
return self.get_fake_value(other) * other
def get_fake_value(self,other):
if (self.max_step_count==1):
fake_value = self.arr[0]
else:
fake_value = self.arr[self.curstep]
self.current_mul = (self.current_mul+1) % self.max_mul_count
self.curstep = (self.current_mul) // self.steps_per_mul
self.current_step+=1#FAKE STEP
return fake_value
def fix_ddim_step_count(steps):
valid_step = 999 / (1000 // steps)
if valid_step == int(valid_step): steps=int(valid_step)+1
if ((1000 % steps)!=0): steps +=1
return steps