File size: 13,788 Bytes
db57927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
#CFG Scheduler for Automatic1111 Stable Diffusion web-ui
#Author: https://github.com/guzuligo/
#Based on: https://github.com/tkalayci71/attenuate-cfg-scale
#Version: 1.81
from logging import PlaceHolder
import math
import os
import sys
import traceback
import copy
import numpy as np
import modules.scripts as scripts
import gradio as gr
#from modules.processing import Processed, process_images
from modules import images,processing
from modules.processing import process_images, Processed
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
class Script(scripts.Script):
def run(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
return self.runBasic(p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle)
#def run(self,p,cfg,eta,dns ,loops,nSingle):
# return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
def show(self, is_img2img):
self.isAdvanced=False
return True
def title(self):
return "CFG Scheduling" if (self.isAdvanced) else "CFG Auto"
def uiAdvanced(self, is_img2img):
placeholder="The steps on which to modify, in format step:value - example: 0:10 ; 10:15"
n0 = gr.Textbox(label="CFG",placeholder=placeholder)
placeholder="You can also use functions like: 0: math.fabs(-t) ; 1: (1-t/T) ; 2:=e ;3:t*d"
n1 = gr.Textbox(label="ETA",placeholder=placeholder)
#loops
#n2 = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=1)
n2 = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.5)
with gr.Row():
loops=gr.Number(value=1,precision=0,label="loops")
nSingle= gr.Checkbox(label="Loop returns one")
return [n0,n1,n2 ,loops,nSingle]
#uiBasic
def uiAuto(self, is_img2img):
self.autoOptions={"b1":"Blur First V1","b2":"Blur Last","f1":"Force at Start V1","f2":"Force Allover"}
with gr.Row():
dns = gr.Slider(minimum=0, maximum=1, step=0.01, label='Target Denoising : Decay per Batch', value=0.25)
n0=gr.Dropdown(list(self.autoOptions.values()),value=self.autoOptions["b1"],label="Scheduler")
with gr.Row():
n1 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Strength', value=10)
n2 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Strength', value=10)
with gr.Row():
n3 = gr.Slider(minimum=0, maximum=100, step=1, label='Main Range', value=10)
n4 = gr.Slider(minimum=0, maximum=100, step=1, label='Sub- Range', value=10)
with gr.Row():
loops=gr.Number(value=1,precision=0,label="loops")
nSingle= gr.Checkbox(label="Loop returns one")
return [n0,dns, n1,n2,n3,n4 ,loops,nSingle]
def ui(self, is_img2img):
return self.uiAdvanced(is_img2img) if (self.isAdvanced) else self.uiAuto(is_img2img)
def prepare(self,p,cfg,eta):
sampler_name=p.sampler_name
if not sampler_name:
print("Warning: sampler not specified. Using Euler a")
sampler_name="Euler a"
#if p.sampler_index in (0,1,2,7,8,10,14):
if sampler_name in ('Euler a','Euler','LMS','DPM++ 2M','DPM fast','LMS Karras','DPM++ 2M Karras'):
max_mul_count = p.steps * p.batch_size
steps_per_mul = p.batch_size
#elif p.sampler_index in (3,4,5,6,11,12,13):
elif sampler_name in ('Heun','DPM2','DPM2 a','DPM++ 2S a','DPM2 Karras','DPM2 a Karras','DPM++ 2S a Karras'):
max_mul_count = ((p.steps*2)-1) * p.batch_size
steps_per_mul = 2 * p.batch_size
#elif p.sampler_index==15: # ddim
elif sampler_name=='DDIM': # ddim
max_mul_count = fix_ddim_step_count(p.steps)
steps_per_mul = 1
#elif p.sampler_index==16: # plms
elif sampler_name=='PLMS': # plms
max_mul_count = fix_ddim_step_count(p.steps)+1
steps_per_mul = 1
else:
print("Not supported sampler", p.sampler_name, p.sampler_index)
return # 9=dpm adaptive
#print("it is:",n0t)
#for x in range(int(n)):
self.p=p
cfg=cfg.strip()
eta=eta.strip()
if cfg:
p.cfg_scale=Fake_float(p.cfg_scale,self.split(cfg,str(p.cfg_scale)) , max_mul_count, steps_per_mul)
#p.cfg_scale.p=p
if eta:
if (eta.find("@")==-1):
p.s_churn=p.eta =Fake_float(p.eta or 1,self.split(eta,str(p.eta)) , max_mul_count, steps_per_mul)
#print(p.s_noise)
#Fake_float(p.s_churn or 1,self.split(eta,str(p.s_churn)), max_mul_count, steps_per_mul)
else:
eta=eta.split("@")
if eta[0].strip()!="":
p.s_churn=Fake_float(p.s_churn or 1,self.split(eta[0],str(p.s_churn)), max_mul_count, steps_per_mul)
if len(eta)>1 and eta[1].strip()!="":
p.s_noise=Fake_float(p.s_noise or 1,self.split(eta[1],str(p.s_noise)), max_mul_count, steps_per_mul)
if len(eta)>2 and eta[2].strip()!="":
p.s_tmin=Fake_float(p.s_tmin or 1,self.split(eta[2],str(p.s_tmin)), max_mul_count, steps_per_mul)
if len(eta)>3 and eta[3].strip()!="":
p.s_tmax=Fake_float(p.s_tmax or 1,self.split(eta[2],str(p.s_tmax)), max_mul_count, steps_per_mul)
#p.cfg_scale.p=p
#
def runBasic(self,p,n0,dns,ns1,ns2,nr1,nr2 ,loops,nSingle):
if(n0==self.autoOptions["b1"]):
cfg=f"""0:{ns2}/2 if (t<T* (({nr1}/100)**2)) else cfg"""
eta=f"""0:{ns1}+1 if (t<T*(({nr1}/100)**2) ) else e*({nr2}/50)"""
elif(n0==self.autoOptions["f1"]):
cfg=f"""0:({ns1}*4)*((1-d**0.5)**1.5)/(t*(30-cfg)/30+1)/(l*2+1) if (t<T*{nr1}/100) else 0.1 if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 7-d*7"""
eta=f"""0:0.8+{ns2}/25-min(t*0.1, 0.8+{ns2}/25 -0.01) if (t<T*{nr1}/100) else {ns2}/(10*(1+l*0.5)) if (t<T*({nr1}+{nr2}-{nr1}*{nr2})/100) else 1+e"""
elif(n0==self.autoOptions["b2"]):
cfg=f"""0:cfg if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns2}/10"""
eta=f"""0:e if (e>{nr1}/100 or e<(1-({nr1}+{nr2}*(100-{nr1})/100)/100)) else {ns1}/10"""
elif(n0==self.autoOptions["f2"]):
cfg=f"""= min(40,max(0,cfg+x(t)*({ns2}-50)/2 )) """
eta=f"""0:(1-(t%(2+ 10-.1*{nr1} ))/ (2+10-.1*{nr1}) )*{ns1}*.1 * (e*(100-{nr2})+{nr2})*.01 """
self.cfgsib={"Scheduler":n0,'Main Strength':ns1,'Sub- Strength':ns2,'Main Range':nr1,'Sub- Range':nr2}
return self.runAdvanced(p,cfg,eta,dns ,loops,nSingle)
def runAdvanced(self, p, cfg,eta,dns ,loops,nSingle):
self.initSeed=p.seed
#loops=p.batch_size
loops = loops if (loops>0) else 1
batch_count=p.n_iter
state.job_count = loops*p.n_iter
p.denoising_strength=p.denoising_strength or (1 if (self.isAdvanced) else 0.2)
initial_denoising_strength=p.denoising_strength
p.do_not_save_grid = True
if hasattr(p,"init_images"):
original_init_image = p.init_images
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
else:
original_init_image=None
all_images = []
cfgsi=" loops:"+str(loops)+" terget denoising: "+str(dns)+"\nCFG: "+cfg+"\nETA: "+eta+"\n"
p.extra_generation_params = {
"CFG Scheduler Info":cfgsi,
}
#if basic, add basic info as well
if (self.isAdvanced==False):
self.cfgsib.update(p.extra_generation_params)
p.extra_generation_params=self.cfgsib
if loops>1:
processing.fix_seed(p)
#self.initDenoise=p.denoising_strength
for n in range(batch_count):
proc=None
history = []
p.denoising_strength=initial_denoising_strength
if (original_init_image!=None):
p.init_images=original_init_image
for loop in range(loops):
if opts.img2img_color_correction and original_init_image!=None:
p.color_corrections = initial_color_corrections
p.batch_size = 1
p.n_iter = 1
self.loop=loop
self.prepare(p, cfg,eta)
proc = process_images(p)
if loop==0:
self.initInfo=proc.info
self.initSeed=proc.seed
if len(proc.images)>0:
history.append(proc.images[0])
p.seed+=1
p.init_images=[proc.images[0]]
#p.denoising_strength=min(max(p.denoising_strength * dns, 0.05), 1)
p.denoising_strength=initial_denoising_strength+(dns-initial_denoising_strength)*(loop+1)/(loops)
else:#interrupted
break
#print("New denoising:"+str(p.denoising_strength)+"\n" )
all_images += history
if loops>0:#TODO:maybe this is not needed
p.seed=self.initSeed
#return proc if (loops==1 and p.batch_size==1) else Processed(p, all_images, self.initSeed, self.initInfo)
return proc if(nSingle) else Processed(p, all_images, self.initSeed, self.initInfo)
def peek(self,val):
print(val)
return val
def split(self,src,default='0'):
p=self.p
self.P=copy.copy({
'cfg':float(str(p.cfg_scale)),
'd':p.denoising_strength or 1,
'l':self.loop,
'min':min,
'max':max,
'abs':abs,
'pow':pow,
'pi':math.pi,
'x':self._interpolate,
'int':int,
'floor':math.floor,
'peek':self.peek,
})
if src[0:4]=="eval":
src="0:"+src[4:]
if src[0]=="=":
src="0:"+src[1:]
#clean up
while src[len(src)-1] in [";"," "]:
src=src[0:len(src)-1]
while src[0] in [";"," "]:
src=src[1:]
arr0 = src.split(';')##2
#resort array accounting for commas in indecies
arr=[]
for j in arr0:
#print(j)
v=j.split(":")
q=v[0].split(",")
for i in q:
arr.append(i+":"+v[1])
arr.sort(key=self._sort)
s=[]
val=default
for j in range(p.steps+1):
i=0
while i<len(arr) and i<=j:
v=arr[i].split(":")
#s=proc[j].n_iter
if math.floor(int(v[0]) if v[0].isnumeric() else float(v[0])*p.steps)==j:
val=v[1].strip()
break
i=i+1
#lets just evaluate all
if val[0]=="=":
val=val[1:]
_eta=1-j/p.steps
params={'t':j,'T':p.steps,'math':math,'p':p,'e':float(str(_eta))}
params.update(copy.copy(self.P))
#print(params)
s.append(float(eval(val,params)))
#end while loop
#else:
#s.append(float(val))
print(np.round(s,1),"\n")
return s
#limits a range of a value
def _interpolate(self,v,start=0,end=None,m=1):
end=end or self.p.steps
v=min(max(v,start),end)-start
return v*m/(end-start)+(1 if m<0 else 0)
def _sort(self,a):
_=a.split(":")[0]#splitter tester
return math.floor(int(_) if (_.isnumeric()) else float(_)*self.p.steps)
def evaluate (self,src):
s=[]
p=self.p
T=self.p.steps
for j in range(T+1):
_eta=1-j/p.steps
params={'t':j,'T':p.steps,'math':math,'p':p,'e':_eta}
params.update(self.P)
s.append(float(eval(src,params)))
return s
class Fake_float(float):
def __new__(self, value, arr, max_mul_count, steps_per_mul):
return float.__new__(self, value)
def __init__(self, value, arr, max_mul_count, steps_per_mul):
float.__init__(value)
self.arr = arr
self.curstep = 0
#self.p=p
#self.orig_value = orig_value
#self.target_value = target_value
self.max_mul_count = max_mul_count
self.current_mul = 0
self.steps_per_mul = steps_per_mul
self.current_step = 0 #fake
self.max_step_count = (max_mul_count // steps_per_mul) + (max_mul_count % steps_per_mul > 0)
def __mul__(self,other):
return self.fake_mul(other)
def __rmul__(self,other):
return self.fake_mul(other)
#def __add__(self,other):
#print("ADD!")
# return self.get_fake_value(other)+other
#def __sub__(self,other):
#print("SUB!")
# return self.get_fake_value(other)-other
def fake_mul(self,other):
#print("MUL!")
return self.get_fake_value(other) * other
def get_fake_value(self,other):
if (self.max_step_count==1):
fake_value = self.arr[0]
else:
fake_value = self.arr[self.curstep]
self.current_mul = (self.current_mul+1) % self.max_mul_count
self.curstep = (self.current_mul) // self.steps_per_mul
self.current_step+=1#FAKE STEP
return fake_value
def fix_ddim_step_count(steps):
valid_step = 999 / (1000 // steps)
if valid_step == int(valid_step): steps=int(valid_step)+1
if ((1000 % steps)!=0): steps +=1
return steps
|