|
|
|
--- |
|
license: openrail++ |
|
base_model: stabilityai/stable-diffusion-xl-base-1.0 |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
inference: false |
|
--- |
|
|
|
# SDXL-controlnet: Depth |
|
|
|
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following. |
|
|
|
prompt: spiderman lecture, photorealistic |
|
![images_0)](./spiderman.png) |
|
|
|
## Usage |
|
|
|
Make sure to first install the libraries: |
|
|
|
```bash |
|
pip install accelerate transformers safetensors opencv-python diffusers |
|
``` |
|
|
|
And then we're ready to go: |
|
|
|
```python |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation |
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL |
|
from diffusers.utils import load_image |
|
|
|
|
|
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") |
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", |
|
variant="fp16", |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
controlnet=controlnet, |
|
vae=vae, |
|
variant="fp16", |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
pipe.enable_model_cpu_offload() |
|
|
|
def get_depth_map(image): |
|
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") |
|
with torch.no_grad(), torch.autocast("cuda"): |
|
depth_map = depth_estimator(image).predicted_depth |
|
|
|
depth_map = torch.nn.functional.interpolate( |
|
depth_map.unsqueeze(1), |
|
size=(1024, 1024), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) |
|
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) |
|
depth_map = (depth_map - depth_min) / (depth_max - depth_min) |
|
image = torch.cat([depth_map] * 3, dim=1) |
|
|
|
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] |
|
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) |
|
return image |
|
|
|
|
|
prompt = "stormtrooper lecture, photorealistic" |
|
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") |
|
controlnet_conditioning_scale = 0.5 # recommended for good generalization |
|
|
|
depth_image = get_depth_map(image) |
|
|
|
images = pipe( |
|
prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
).images |
|
images[0] |
|
|
|
images[0].save(f"stormtrooper.png") |
|
``` |
|
|
|
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl). |
|
|
|
### Training |
|
|
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). |
|
|
|
#### Training data and Compute |
|
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs. |
|
|
|
#### Batch size |
|
Data parallel with a single gpu batch size of 8 for a total batch size of 256. |
|
|
|
#### Hyper Parameters |
|
Constant learning rate of 1e-5. |
|
|
|
#### Mixed precision |
|
fp16 |