ltx-test / README.md
dn6's picture
dn6 HF staff
Upload folder using huggingface_hub
9d8ec7f verified
|
raw
history blame
2.4 kB
metadata
pipeline_tag: text-to-video
library_name: diffusers
tags:
  - text-to-video
  - image-to-video

Unofficial Diffusers-format weights for https://huggingface.co/Lightricks/LTX-Video (version 0.9.1).

Text-to-Video:

import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video

pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")

prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"

video = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=704,
    height=480,
    num_frames=161,
    num_inference_steps=50,
    decode_timestep=0.03,
    decode_noise_scale=0.025,
).frames[0]
export_to_video(video, "output.mp4", fps=24)

Image-to-Video:

import torch
from diffusers import LTXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image

pipe = LTXImageToVideoPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")

image = load_image(
    "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
)
prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"

video = pipe(
    image=image,
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=704,
    height=480,
    num_frames=161,
    num_inference_steps=50,
    decode_timestep=0.03,
    decode_noise_scale=0.025,
).frames[0]
export_to_video(video, "output.mp4", fps=24)