Dicta-LM 2.0 Collection
Collection
9 items
•
Updated
•
16
The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters trained to specialize in Hebrew text.
For full details of this model please read our release blog post or the technical report.
This model contains the AWQ 4-bit quantized version of the base model DictaLM-2.0.
You can view and access the full collection of base/instruct unquantized/quantized versions of DictaLM-2.0
here.
Running this code requires less than 5GB of GPU VRAM.
from transformers import pipeline
# This loads the model onto the GPU in bfloat16 precision
model = pipeline('text-generation', 'dicta-il/dictalm2.0-AWQ', device_map='cuda')
# Sample few shot examples
prompt = """
עבר: הלכתי
עתיד: אלך
עבר: שמרתי
עתיד: אשמור
עבר: שמעתי
עתיד: אשמע
עבר: הבנתי
עתיד:
"""
print(model(prompt.strip(), do_sample=False, max_new_tokens=4, stop_sequence='\n'))
# [{'generated_text': 'עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'}]
DictaLM-2.0 is based on the Mistral-7B-v0.1 model with the following changes:
DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms.
If you use this model, please cite:
@misc{shmidman2024adaptingllmshebrewunveiling,
title={Adapting LLMs to Hebrew: Unveiling DictaLM 2.0 with Enhanced Vocabulary and Instruction Capabilities},
author={Shaltiel Shmidman and Avi Shmidman and Amir DN Cohen and Moshe Koppel},
year={2024},
eprint={2407.07080},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.07080},
}