|
--- |
|
language: |
|
- "multilingual" |
|
- "en" |
|
tags: |
|
- "sentiment-analysis" |
|
- "testing" |
|
- "unit tests" |
|
--- |
|
# DistilBert Dummy Sentiment Model |
|
|
|
## Purpose |
|
|
|
This is a dummy model that can be used for testing the transformers `pipeline` with the task `sentiment-analysis`. It should always give random results (i.e. `{"label": "negative", "score": 0.5}`). |
|
|
|
## How to use |
|
|
|
```python |
|
classifier = pipeline("sentiment-analysis", "dhpollack/distilbert-dummy-sentiment") |
|
results = classifier(["this is a test", "another test"]) |
|
``` |
|
|
|
## Notes |
|
|
|
This was created as follows: |
|
|
|
1. Create a vocab.txt file (in /tmp/vocab.txt in this example). |
|
|
|
``` |
|
[UNK] |
|
[SEP] |
|
[PAD] |
|
[CLS] |
|
[MASK] |
|
``` |
|
|
|
2. Open a python shell: |
|
|
|
```python |
|
import transformers |
|
config = transformers.DistilBertConfig(vocab_size=5, n_layers=1, n_heads=1, dim=1, hidden_dim=4 * 1, num_labels=2, id2label={0: "negative", 1: "positive"}, label2id={"negative": 0, "positive": 1}) |
|
model = transformers.DistilBertForSequenceClassification(config) |
|
tokenizer = transformers.DistilBertTokenizer("/tmp/vocab.txt", model_max_length=512) |
|
config.save_pretrained(".") |
|
model.save_pretrained(".") |
|
tokenizer.save_pretrained(".") |
|
``` |
|
|