ppo-LunarLander-v2 / config.json
dfomin's picture
First attempt
74a0673
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f68fa982cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68fa982d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68fa982dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68fa982e60>", "_build": "<function ActorCriticPolicy._build at 0x7f68fa982ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f68fa982f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f68fa983010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68fa9830a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f68fa983130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68fa9831c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68fa983250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68fa9832e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f68fa985680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686495370675752109, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqGpb2P3mq6bnaLOU+QXDRosgQ6lYmeuAAAgD8AAIA/wHLhvSG8hbyYP549itCzvST92L1SsIm+AACAPwAAgD+N7pO94YCgumDLCrLGQ1yw0RktN5E3BjIAAIA/AAAAAACglz4yHCA/q395vECGHL+h3RA/emWkvQAAAAAAAAAAGqlWPrxkpD5jV4K+U86dvo76NT01SvK9AAAAAAAAAABmNAQ+yBi1PzQUJT+rimu+nCqVPegCTD4AAAAAAAAAABrhxj2Fe8O5aoZtOp3tpDXUWww7XGGOuQAAAAAAAIA/+k5FvtOpMj/67HC+8qILv3z7OL46dRG7AAAAAAAAAABmSQk9KVg0unCD/rtV7N244uNOOyFxTDgAAIA/AACAP0bvBj64Hq+7k3Q5PdcZmrvx/P28+y+DvAAAgD8AAIA/7cchPpzgP7zVPz+7z9ZQOWVWpL31X3k6AACAPwAAgD/APhg+D9FqvOLB+DvJghC903jPva2y6r0AAIA/AACAP2YiubtiSrc/tJaPvpq/6D6oxJw7WMPvPAAAAAAAAAAAmqFPOxsdkj+PYaM5tABCvyQV97tWzDk9AAAAAAAAAAAAp469+FWbP7Feq755mCS/Q6aVve7gdr0AAAAAAAAAAI2qvT327CK63cNos9SF7S7Xlhq5+SS1MwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDo4hllK+MAWyUS9mMAXSUR0CYN/Yv38GcdX2UKGgGR0BwVzZ8KG+LaAdLvGgIR0CYODjopx3ndX2UKGgGR0ByOl/b0voNaAdL3WgIR0CYOLU7jkuIdX2UKGgGR0Bwqr7Lt/nXaAdLtGgIR0CYOPSUTtb+dX2UKGgGR0BvKt1W8yvcaAdL92gIR0CYOb2pyZKGdX2UKGgGR0BziG/fwZwXaAdNHwFoCEdAmDp3Ux20RnV9lChoBkdAb7Z/vOQhfWgHS9NoCEdAmDso5PuXu3V9lChoBkdAc3uwPy08eWgHS+1oCEdAmDsphz/6wnV9lChoBkdAcQWRHPNVzmgHS7toCEdAmDwmdNFjNXV9lChoBkdAcHfI91U2k2gHS7NoCEdAmDxC704BFXV9lChoBkdAcJBRradtmGgHS9poCEdAmDxNDtw71nV9lChoBkdAYeYA8SwnpmgHTegDaAhHQJg8YvWYnfF1fZQoaAZHQEmxUipvP1NoB0vJaAhHQJg9Z58jRlZ1fZQoaAZHQHBP9YB/7SBoB0vOaAhHQJg9e2SdOIt1fZQoaAZHQG7BMRHww0xoB0u8aAhHQJg9zf/FR511fZQoaAZHQHD84fSx7iRoB0u8aAhHQJg+CS0Sh8J1fZQoaAZHQHMEQ35vcahoB0veaAhHQJg+NO9FnZl1fZQoaAZHQHAXGxlg+hZoB0vJaAhHQJg/EPPLPld1fZQoaAZHQHB2ltCRfWtoB0vqaAhHQJhA2lsP8Q91fZQoaAZHQHIMx1X/5tZoB0vjaAhHQJhBaGCZnct1fZQoaAZHQHFsD/IbOu9oB0vraAhHQJhBphAnlXB1fZQoaAZHQHAvbojfNzNoB0vFaAhHQJhBvi3ocJd1fZQoaAZHQGbOyS/0ulJoB02tAWgIR0CYQuPk7wKCdX2UKGgGR0Bu+Xk3juKGaAdLv2gIR0CYQvpzcRDkdX2UKGgGR0BxyWvA44p+aAdL+GgIR0CYQzFQEZBLdX2UKGgGR0BuRccn3L3caAdLz2gIR0CYQ1Q7LdN4dX2UKGgGR0BzR7tw71ZlaAdLxGgIR0CYQ23os7MgdX2UKGgGR0By+SxoqTbGaAdNAwFoCEdAmEOVXeWOZXV9lChoBkdAcW/x9oexOmgHS75oCEdAmEOsqe9SM3V9lChoBkdAckEcSXdCV2gHS91oCEdAmERGGZeAu3V9lChoBkdAchXzQ/oq1GgHTQEBaAhHQJhHFHWjGkx1fZQoaAZHQGKVmmk30f5oB03oA2gIR0CYR1WBz3h5dX2UKGgGR0Bw4dImPYFraAdL12gIR0CYSGxWkrPMdX2UKGgGR0ByWLIlt0muaAdL8GgIR0CYSLPzWf9QdX2UKGgGR8Br7XwTdtVJaAdNqwFoCEdAmEk9mHxjKHV9lChoBkdAcL6ZMcp9Z2gHS+RoCEdAmEld25hBq3V9lChoBkdAcUJ1Gsmv4mgHS+hoCEdAmElnskY4yXV9lChoBkdAcmUcPe54GGgHS89oCEdAmEnwW8AaN3V9lChoBkdAco4BnBciW2gHS9FoCEdAmEpkNjLB9HV9lChoBkdAcqzLjghr32gHS8ZoCEdAmEqK1PWQOnV9lChoBkdAcHfTJyQxOGgHS69oCEdAmEq1O9FnZnV9lChoBkdAcb6aef7Jn2gHS85oCEdAmErw7xNIsnV9lChoBkdAcmC3azu4PWgHTRMBaAhHQJhNCxt52Qp1fZQoaAZHQHNoGbsniNtoB00fAWgIR0CYTVtLL6k7dX2UKGgGR0Bup/k92X9jaAdL12gIR0CYTxGUOd5IdX2UKGgGR0BxVlkPMB6saAdLtGgIR0CYUC0gKWszdX2UKGgGR0BwvAslLOAzaAdLu2gIR0CYUHOXE61cdX2UKGgGR0BwVVyimEXdaAdL1mgIR0CYUJcxTKkmdX2UKGgGR0BxlM1dgOSXaAdLz2gIR0CYUJcinpB5dX2UKGgGR0BxRRqzqrzYaAdLwmgIR0CYUKJBw++udX2UKGgGR0Bw2NDArQPaaAdL+2gIR0CYUOqcVgx8dX2UKGgGR0BwiT4Glhw3aAdLr2gIR0CYUc60IC2ddX2UKGgGR0BwCc+KTB69aAdLzmgIR0CYUeIHC4z8dX2UKGgGR0BxZYy57PY4aAdLz2gIR0CYUou01IiDdX2UKGgGR0BwXjFNtZV5aAdL12gIR0CYUrJ4jbBXdX2UKGgGR0Bx/vtiQT24aAdL3mgIR0CYU0YUWVNYdX2UKGgGR0ByhWpda+vhaAdLzmgIR0CYVNZqEeySdX2UKGgGR0ByD0L5RCQcaAdL6WgIR0CYVVOAiFCcdX2UKGgGR0BmCx9E1EVnaAdNFAJoCEdAmFWCyQgcLnV9lChoBkdAYBcHt4RmLGgHTegDaAhHQJhWapGWldl1fZQoaAZHQHPo9fXwsoVoB0vKaAhHQJhWfeoDPnl1fZQoaAZHQHIehUm2LHdoB0vGaAhHQJhWyeNDMNd1fZQoaAZHQHLREVN5+phoB0vNaAhHQJhWyejEehh1fZQoaAZHQHQGEs8PnSxoB0v1aAhHQJhW6hZha1V1fZQoaAZHQHGhYffXPJJoB0vmaAhHQJhXWNsFdLR1fZQoaAZHQHILmhZha1VoB0uzaAhHQJhXXpRoAXF1fZQoaAZHQHE+ztG/etVoB0vLaAhHQJhXfEzfrKN1fZQoaAZHQG1SsMI/qxFoB0v5aAhHQJhXr/S6UaB1fZQoaAZHQHDOiB06o2poB0vnaAhHQJhYl1GLDQ91fZQoaAZHQHHdKlYU34toB009AWgIR0CYWhWSEDhcdX2UKGgGR0BxdL+cYqG2aAdL3mgIR0CYWitaIN3GdX2UKGgGR0BxSd8eCCjDaAdLyGgIR0CYWkSuyNXHdX2UKGgGR0BwsOT3Zf2LaAdL1WgIR0CYWmsw+MZQdX2UKGgGR0Bxl6yJKraNaAdLsmgIR0CYWx8MNMGpdX2UKGgGR0ByvdvAGjbjaAdL4mgIR0CYW+UcXFcZdX2UKGgGR0BwuUHE/B3zaAdL22gIR0CYXCIl+mWMdX2UKGgGR0Bw0yIeo1k2aAdLzGgIR0CYXGPhhpg1dX2UKGgGR0BzDGq94/u9aAdL0mgIR0CYXJTWXkYGdX2UKGgGR0BxhVkK/mDEaAdL62gIR0CYXJR6Ww/xdX2UKGgGR0ByNHT5O8CgaAdNBAFoCEdAmFzgfZElV3V9lChoBkdAca76YVqN62gHTTcBaAhHQJhfvesPrfN1fZQoaAZHQG/jhnBciW5oB0vNaAhHQJhgDsWweNl1fZQoaAZHQHG6QTdtVJdoB0vbaAhHQJhgFsHjZL91fZQoaAZHQHAJd9lVcUxoB0vcaAhHQJhgNoRIz311fZQoaAZHQHEr9NJvo/1oB00iAWgIR0CYYFlfZ26kdX2UKGgGR0Bx6/L1VYITaAdNXAFoCEdAmGCScG1QZXV9lChoBkdAcJv72tdRi2gHS8VoCEdAmGCcvZh8Y3V9lChoBkdAbny7wKBuoGgHS8hoCEdAmGGTIvJzUHV9lChoBkdAc0e2Qnx8UmgHS75oCEdAmGG+pXIU8HV9lChoBkdAbfVFtsN2DGgHS8doCEdAmGHNedCmdnV9lChoBkdAb9Xof0VafWgHS9hoCEdAmGJtc0Ltu3V9lChoBkdAcKvDcdo372gHS89oCEdAmGKEeU6gd3V9lChoBkdAaQECvovBamgHTU0CaAhHQJhiiarmyPd1fZQoaAZHQEwANIbwSapoB0uwaAhHQJhkeuMdcSp1fZQoaAZHQGhgnVwxWT5oB00NA2gIR0CYZeeiBXjmdX2UKGgGR0Bwgb8KohpyaAdLxGgIR0CYZfFwDNhWdX2UKGgGR0BxE8UahpQDaAdL6GgIR0CYZndKNAC5dX2UKGgGR0BwmufZmI0qaAdL+mgIR0CYZyXJHRTkdX2UKGgGR0Byj4OBlMAWaAdL9WgIR0CYZyTvAoG6dX2UKGgGR0Bo2Kcy31BdaAdN4wFoCEdAmGei925hB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}