First attempt
Browse files- README.md +21 -12
- config.json +1 -1
- ppo-default.zip +3 -0
- ppo-default/_stable_baselines3_version +1 -0
- ppo-default/data +99 -0
- ppo-default/policy.optimizer.pth +3 -0
- ppo-default/policy.pth +3 -0
- ppo-default/pytorch_variables.pth +3 -0
- ppo-default/system_info.txt +9 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -6,23 +6,32 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 211.11 +/- 22.82
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: LunarLander-v2
|
20 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: default
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.24 +/- 12.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **default** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **default** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe176320710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1763207a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe176320830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1763208c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe176320950>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1763209e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe176320a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe176320b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe176320b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe176320c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe176320cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe176367930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651841089.1668882, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0kD7voK1Y/+ioZvgqIl762xSQ9JcZmvQAAAAAAAAAAA+myvtISmjzywla79HUnOfXZmr1Fjns6AACAPwAAgD+z7jE9UliYODcCBrugjlM7lxISOqAN0rsAAAAAAAAAAA2G570U2pa6pTkYuZFHSDO74Pi6+BItOAAAgD8AAIA/7QqWvujRyby+YDo7DH+ZObM1MT5DpmS6AACAPwAAgD/zx6W9ZHJQPn2Igb4t0S2+VlqWvbqjWb4AAAAAAAAAANplkL3sgZW5dTZiu1oxXzd9FIG7AMfQtgAAgD8AAIA/mnL1vBQ4iroBGae7kUSNtSUPGbo6CPg0AACAPwAAgD/4Q7m+JPLFvVoxirvDRSG6NInIPhyYDLsAAIA/AACAP2ZW2LuP6me61rDAupEVNLXguXa77rbgOQAAgD8AAIA/mtg0Pbh26rn1KXS6MWeNtZJqGDqt3ow5AACAPwAAgD+aOIk84QyNui4E3rsLkJw1RAICubkUDLUAAIA/AACAP+M0Ur7DAH28XjFfO0Uhhjlnm+U9QouJugAAgD8AAIA/DQ5mvog27LxyPhW9jX2Pu3brUj7mslk8AACAPwAAgD+gvji+9lRXvMGhPb3+BoG7LHG/PegaUjwAAIA/AACAP40anb249qy5fueROndiPTTKJ8y6GaCruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkMAffv58W0CUhpRSlIwBbJRN6AOMAXSUR0CCSuaVlf7adX2UKGgGaAloD0MIrKsCtRj8CsCUhpRSlGgVS/5oFkdAgmKsNDtw73V9lChoBmgJaA9DCLa+SGjLeTBAlIaUUpRoFUvsaBZHQIJiyMcZLqV1fZQoaAZoCWgPQwh5rYTuki9hQJSGlFKUaBVN6ANoFkdAgmi89fTkQ3V9lChoBmgJaA9DCHwKgPEMh1pAlIaUUpRoFU3oA2gWR0CCgDkjHGS7dX2UKGgGaAloD0MIPUfku5Q4X0CUhpRSlGgVTegDaBZHQIKOOvr4WUN1fZQoaAZoCWgPQwivJk9ZTVNaQJSGlFKUaBVN6ANoFkdAgo5qIrOJL3V9lChoBmgJaA9DCPThWYKMME7AlIaUUpRoFUvUaBZHQILS+eWfK6p1fZQoaAZoCWgPQwjRWtHmOL5SQJSGlFKUaBVN6ANoFkdAgtMTVDrquHV9lChoBmgJaA9DCIyDS8ecTznAlIaUUpRoFU0LAWgWR0CC1qM+eOGTdX2UKGgGaAloD0MIP6cgPxtfY0CUhpRSlGgVTegDaBZHQILaaCBf8dh1fZQoaAZoCWgPQwhpxqLp7K9kQJSGlFKUaBVN6ANoFkdAgwOzoEB8yHV9lChoBmgJaA9DCODYs+cycFdAlIaUUpRoFU3oA2gWR0CDCALG7z06dX2UKGgGaAloD0MI5bm+DwctXkCUhpRSlGgVTegDaBZHQIMYd4FA3UB1fZQoaAZoCWgPQwgcKPBOPgJaQJSGlFKUaBVNAwJoFkdAgx+iUornT3V9lChoBmgJaA9DCFcJFoczZlNAlIaUUpRoFU3oA2gWR0CDIpgG8mKJdX2UKGgGaAloD0MI8GskCcJSUUCUhpRSlGgVTegDaBZHQIMizQAuIyl1fZQoaAZoCWgPQwibG9MTlsxVQJSGlFKUaBVN6ANoFkdAgynSgGr0a3V9lChoBmgJaA9DCCKOdXEbBl5AlIaUUpRoFU3oA2gWR0CDK5WtlqagdX2UKGgGaAloD0MI36XUJeNYOECUhpRSlGgVS+ZoFkdAgzDo1k1/D3V9lChoBmgJaA9DCFkWTPzRGWFAlIaUUpRoFU3oA2gWR0CDPIypJf6XdX2UKGgGaAloD0MIg1K0ci+cMECUhpRSlGgVS+ZoFkdAgz18/MW43HV9lChoBmgJaA9DCHaIf9jSHUPAlIaUUpRoFUv4aBZHQINJCmO2iL51fZQoaAZoCWgPQwg+eO3Shj9bQJSGlFKUaBVN6ANoFkdAg1P/V7Qb/HV9lChoBmgJaA9DCPxwkBDlAy7AlIaUUpRoFUvdaBZHQINyEhaC+UR1fZQoaAZoCWgPQwge/wWCAJReQJSGlFKUaBVN6ANoFkdAg4Ee10DEFXV9lChoBmgJaA9DCGXiVkEM2l5AlIaUUpRoFU3oA2gWR0CDgU8xKxs3dX2UKGgGaAloD0MIMjhKXp3LWkCUhpRSlGgVTegDaBZHQIOEa0fHPu51fZQoaAZoCWgPQwhM++b+6upkQJSGlFKUaBVN6ANoFkdAg4SC7btZ3nV9lChoBmgJaA9DCHSYLy/AeVtAlIaUUpRoFU3oA2gWR0CDyt8WsRxtdX2UKGgGaAloD0MIyM9GrptFZUCUhpRSlGgVTegDaBZHQIPOWdiDujR1fZQoaAZoCWgPQwiH+l3YGr9hQJSGlFKUaBVN6ANoFkdAg/XvcrRSg3V9lChoBmgJaA9DCF0yjpFs/mJAlIaUUpRoFU3oA2gWR0CEExv863iJdX2UKGgGaAloD0MIcJo+O+BtYUCUhpRSlGgVTegDaBZHQIQWUdzXBgx1fZQoaAZoCWgPQwhSCyWT07dhQJSGlFKUaBVN6ANoFkdAhB62hqTKT3V9lChoBmgJaA9DCG6Kx0W1O1xAlIaUUpRoFU3oA2gWR0CEIO1XNke7dX2UKGgGaAloD0MIfQOTG8WJYUCUhpRSlGgVTegDaBZHQIQnKpaRp111fZQoaAZoCWgPQwg4MLlRZPU0wJSGlFKUaBVNFAFoFkdAhCsjh99c8nV9lChoBmgJaA9DCOwvuycPY19AlIaUUpRoFU3oA2gWR0CEM5KTSsr/dX2UKGgGaAloD0MIlpaRek/JUECUhpRSlGgVTegDaBZHQIQ0qM3qAz51fZQoaAZoCWgPQwiWBRN/FCEwQJSGlFKUaBVNEAFoFkdAhEMBouf29XV9lChoBmgJaA9DCFeYvtcQrCpAlIaUUpRoFUu+aBZHQIRE0vkBCD51fZQoaAZoCWgPQwgd5ssLsHtfQJSGlFKUaBVN6ANoFkdAhEmcf3evZHV9lChoBmgJaA9DCCDtf4C1x11AlIaUUpRoFU3oA2gWR0CEZFvze40/dX2UKGgGaAloD0MIc0wW9x/hWkCUhpRSlGgVTegDaBZHQIRx7h99c8l1fZQoaAZoCWgPQwiLVBhbiGlgQJSGlFKUaBVN6ANoFkdAhHIhwVCXyHV9lChoBmgJaA9DCBzuI7cm0F1AlIaUUpRoFU3oA2gWR0CEdSB8x9G7dX2UKGgGaAloD0MIforjwCtkYkCUhpRSlGgVTegDaBZHQIR1N2Pkq+d1fZQoaAZoCWgPQwjuXBjpRR1YQJSGlFKUaBVN6ANoFkdAhHiQaisXBXV9lChoBmgJaA9DCHMTtTQ3LmBAlIaUUpRoFU3oA2gWR0CEv4jQiRnwdX2UKGgGaAloD0MIby2T4XjSMUCUhpRSlGgVTRIBaBZHQITk56yB06p1fZQoaAZoCWgPQwiq9BPO7vlgQJSGlFKUaBVN6ANoFkdAhQRL127nPnV9lChoBmgJaA9DCFw8vOdAPmVAlIaUUpRoFU3oA2gWR0CFESqYqoZRdX2UKGgGaAloD0MID0bsE8AVYECUhpRSlGgVTegDaBZHQIUTtBlcyFh1fZQoaAZoCWgPQwisqpffaShfQJSGlFKUaBVN6ANoFkdAhR/e2VmjCnV9lChoBmgJaA9DCMf0hCUejFdAlIaUUpRoFU3oA2gWR0CFKlUdaMaTdX2UKGgGaAloD0MIQ1n4+lo4VkCUhpRSlGgVTegDaBZHQIUrlonKGL11fZQoaAZoCWgPQwivldBdEpddQJSGlFKUaBVN6ANoFkdAhTw0knkT6HV9lChoBmgJaA9DCNeKNse5yF9AlIaUUpRoFU3oA2gWR0CFPhpB5X2edX2UKGgGaAloD0MIU8xB0NGVW0CUhpRSlGgVTegDaBZHQIVDAku6ErZ1fZQoaAZoCWgPQwiUMT7MXtVdQJSGlFKUaBVN6ANoFkdAhV68oYvWYnV9lChoBmgJaA9DCEuRfCWQ619AlIaUUpRoFU3oA2gWR0CFbGgjhUBGdX2UKGgGaAloD0MISOF6FK6eZECUhpRSlGgVTegDaBZHQIVsmHDaXa91fZQoaAZoCWgPQwga3xeXqm9eQJSGlFKUaBVN6ANoFkdAhW+s1KoQ4HV9lChoBmgJaA9DCP3c0JQdZ2BAlIaUUpRoFU3oA2gWR0CFc5aURnOCdX2UKGgGaAloD0MI78ftl89HY0CUhpRSlGgVTegDaBZHQIV3gw/PgNx1fZQoaAZoCWgPQwjsa11qhAYnQJSGlFKUaBVL0WgWR0CF0d/EwWWQdX2UKGgGaAloD0MI0VlmEYr5WUCUhpRSlGgVTegDaBZHQIXg6ArhBJJ1fZQoaAZoCWgPQwjJ5NTOMDUjwJSGlFKUaBVNHwFoFkdAhewF0gbIcXV9lChoBmgJaA9DCB8tzhjmblxAlIaUUpRoFU3oA2gWR0CF/qNHYpUhdX2UKGgGaAloD0MIS4+merJJYkCUhpRSlGgVTegDaBZHQIYJ+UB4lhR1fZQoaAZoCWgPQwiNJhdjYMUnwJSGlFKUaBVNLAFoFkdAhgr0z0pVj3V9lChoBmgJaA9DCDkJpS+Ecl1AlIaUUpRoFU3oA2gWR0CGDCtJ4B3idX2UKGgGaAloD0MIwjHLngTgYECUhpRSlGgVTegDaBZHQIYWt/OMVDd1fZQoaAZoCWgPQwia7nVS37BjQJSGlFKUaBVN6ANoFkdAhh/LrxAjZHV9lChoBmgJaA9DCOhpwCDpX1pAlIaUUpRoFU3oA2gWR0CGION8VpK0dX2UKGgGaAloD0MIPiMRGsFgXkCUhpRSlGgVTegDaBZHQIYw5V81Gb11fZQoaAZoCWgPQwjovpzZrp5WQJSGlFKUaBVN6ANoFkdAhjK6zmfXgHV9lChoBmgJaA9DCOYF2Een6mJAlIaUUpRoFU3oA2gWR0CGN4l8gIQfdX2UKGgGaAloD0MIBRTq6SN0ZECUhpRSlGgVTegDaBZHQIZQb8WKuSx1fZQoaAZoCWgPQwgCKhxBKsxfQJSGlFKUaBVN6ANoFkdAhlzSeAd4mnV9lChoBmgJaA9DCOviNhrAE1dAlIaUUpRoFU3oA2gWR0CGX69ovi97dX2UKGgGaAloD0MIVfoJZzdYYECUhpRSlGgVTegDaBZHQIZjUKPXCj11fZQoaAZoCWgPQwiCHJQw044rQJSGlFKUaBVNCwFoFkdAhtAsZxaPjnV9lChoBmgJaA9DCI1jJHuED1pAlIaUUpRoFU3oA2gWR0CG1O02tMfzdX2UKGgGaAloD0MI5UF6ihxaKkCUhpRSlGgVTRwBaBZHQIbXagCfYjB1fZQoaAZoCWgPQwhC6KBLONpaQJSGlFKUaBVN6ANoFkdAhuGcXvYvnXV9lChoBmgJaA9DCDikUYGTyVBAlIaUUpRoFU3oA2gWR0CG8sgmJFb3dX2UKGgGaAloD0MIu16aIkCtYUCUhpRSlGgVTegDaBZHQIb+AnKGL1p1fZQoaAZoCWgPQwi+pZwvdoRgQJSGlFKUaBVN6ANoFkdAhv76jN6gNHV9lChoBmgJaA9DCJbtQ95yC1pAlIaUUpRoFU3oA2gWR0CHAC0fozN2dX2UKGgGaAloD0MIdEaU9gaxX0CUhpRSlGgVTegDaBZHQIcKUQRPGhp1fZQoaAZoCWgPQwjP+SmOg3dgQJSGlFKUaBVN6ANoFkdAhxM+Kbayr3V9lChoBmgJaA9DCHNmu0IfD19AlIaUUpRoFU3oA2gWR0CHFFFGXokidX2UKGgGaAloD0MIWcSww5hvXUCUhpRSlGgVTegDaBZHQIcj8ZFXq7l1fZQoaAZoCWgPQwj20D5W8NldQJSGlFKUaBVN6ANoFkdAhyXYNI9TxXV9lChoBmgJaA9DCN0m3CvzbEtAlIaUUpRoFUvsaBZHQIcmNvVEuxt1fZQoaAZoCWgPQwiAZDp0esBhQJSGlFKUaBVN6ANoFkdAhyqEXk5p8HV9lChoBmgJaA9DCJTBUfJqIGNAlIaUUpRoFU3oA2gWR0CHRVlbu+h5dX2UKGgGaAloD0MIi96pgHtvXUCUhpRSlGgVTegDaBZHQIdapmZmZmZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f68fa982cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68fa982d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68fa982dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68fa982e60>", "_build": "<function ActorCriticPolicy._build at 0x7f68fa982ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f68fa982f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f68fa983010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68fa9830a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f68fa983130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68fa9831c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68fa983250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68fa9832e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f68fa985680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686495370675752109, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqGpb2P3mq6bnaLOU+QXDRosgQ6lYmeuAAAgD8AAIA/wHLhvSG8hbyYP549itCzvST92L1SsIm+AACAPwAAgD+N7pO94YCgumDLCrLGQ1yw0RktN5E3BjIAAIA/AAAAAACglz4yHCA/q395vECGHL+h3RA/emWkvQAAAAAAAAAAGqlWPrxkpD5jV4K+U86dvo76NT01SvK9AAAAAAAAAABmNAQ+yBi1PzQUJT+rimu+nCqVPegCTD4AAAAAAAAAABrhxj2Fe8O5aoZtOp3tpDXUWww7XGGOuQAAAAAAAIA/+k5FvtOpMj/67HC+8qILv3z7OL46dRG7AAAAAAAAAABmSQk9KVg0unCD/rtV7N244uNOOyFxTDgAAIA/AACAP0bvBj64Hq+7k3Q5PdcZmrvx/P28+y+DvAAAgD8AAIA/7cchPpzgP7zVPz+7z9ZQOWVWpL31X3k6AACAPwAAgD/APhg+D9FqvOLB+DvJghC903jPva2y6r0AAIA/AACAP2YiubtiSrc/tJaPvpq/6D6oxJw7WMPvPAAAAAAAAAAAmqFPOxsdkj+PYaM5tABCvyQV97tWzDk9AAAAAAAAAAAAp469+FWbP7Feq755mCS/Q6aVve7gdr0AAAAAAAAAAI2qvT327CK63cNos9SF7S7Xlhq5+SS1MwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDo4hllK+MAWyUS9mMAXSUR0CYN/Yv38GcdX2UKGgGR0BwVzZ8KG+LaAdLvGgIR0CYODjopx3ndX2UKGgGR0ByOl/b0voNaAdL3WgIR0CYOLU7jkuIdX2UKGgGR0Bwqr7Lt/nXaAdLtGgIR0CYOPSUTtb+dX2UKGgGR0BvKt1W8yvcaAdL92gIR0CYOb2pyZKGdX2UKGgGR0BziG/fwZwXaAdNHwFoCEdAmDp3Ux20RnV9lChoBkdAb7Z/vOQhfWgHS9NoCEdAmDso5PuXu3V9lChoBkdAc3uwPy08eWgHS+1oCEdAmDsphz/6wnV9lChoBkdAcQWRHPNVzmgHS7toCEdAmDwmdNFjNXV9lChoBkdAcHfI91U2k2gHS7NoCEdAmDxC704BFXV9lChoBkdAcJBRradtmGgHS9poCEdAmDxNDtw71nV9lChoBkdAYeYA8SwnpmgHTegDaAhHQJg8YvWYnfF1fZQoaAZHQEmxUipvP1NoB0vJaAhHQJg9Z58jRlZ1fZQoaAZHQHBP9YB/7SBoB0vOaAhHQJg9e2SdOIt1fZQoaAZHQG7BMRHww0xoB0u8aAhHQJg9zf/FR511fZQoaAZHQHD84fSx7iRoB0u8aAhHQJg+CS0Sh8J1fZQoaAZHQHMEQ35vcahoB0veaAhHQJg+NO9FnZl1fZQoaAZHQHAXGxlg+hZoB0vJaAhHQJg/EPPLPld1fZQoaAZHQHB2ltCRfWtoB0vqaAhHQJhA2lsP8Q91fZQoaAZHQHIMx1X/5tZoB0vjaAhHQJhBaGCZnct1fZQoaAZHQHFsD/IbOu9oB0vraAhHQJhBphAnlXB1fZQoaAZHQHAvbojfNzNoB0vFaAhHQJhBvi3ocJd1fZQoaAZHQGbOyS/0ulJoB02tAWgIR0CYQuPk7wKCdX2UKGgGR0Bu+Xk3juKGaAdLv2gIR0CYQvpzcRDkdX2UKGgGR0BxyWvA44p+aAdL+GgIR0CYQzFQEZBLdX2UKGgGR0BuRccn3L3caAdLz2gIR0CYQ1Q7LdN4dX2UKGgGR0BzR7tw71ZlaAdLxGgIR0CYQ23os7MgdX2UKGgGR0By+SxoqTbGaAdNAwFoCEdAmEOVXeWOZXV9lChoBkdAcW/x9oexOmgHS75oCEdAmEOsqe9SM3V9lChoBkdAckEcSXdCV2gHS91oCEdAmERGGZeAu3V9lChoBkdAchXzQ/oq1GgHTQEBaAhHQJhHFHWjGkx1fZQoaAZHQGKVmmk30f5oB03oA2gIR0CYR1WBz3h5dX2UKGgGR0Bw4dImPYFraAdL12gIR0CYSGxWkrPMdX2UKGgGR0ByWLIlt0muaAdL8GgIR0CYSLPzWf9QdX2UKGgGR8Br7XwTdtVJaAdNqwFoCEdAmEk9mHxjKHV9lChoBkdAcL6ZMcp9Z2gHS+RoCEdAmEld25hBq3V9lChoBkdAcUJ1Gsmv4mgHS+hoCEdAmElnskY4yXV9lChoBkdAcmUcPe54GGgHS89oCEdAmEnwW8AaN3V9lChoBkdAco4BnBciW2gHS9FoCEdAmEpkNjLB9HV9lChoBkdAcqzLjghr32gHS8ZoCEdAmEqK1PWQOnV9lChoBkdAcHfTJyQxOGgHS69oCEdAmEq1O9FnZnV9lChoBkdAcb6aef7Jn2gHS85oCEdAmErw7xNIsnV9lChoBkdAcmC3azu4PWgHTRMBaAhHQJhNCxt52Qp1fZQoaAZHQHNoGbsniNtoB00fAWgIR0CYTVtLL6k7dX2UKGgGR0Bup/k92X9jaAdL12gIR0CYTxGUOd5IdX2UKGgGR0BxVlkPMB6saAdLtGgIR0CYUC0gKWszdX2UKGgGR0BwvAslLOAzaAdLu2gIR0CYUHOXE61cdX2UKGgGR0BwVVyimEXdaAdL1mgIR0CYUJcxTKkmdX2UKGgGR0BxlM1dgOSXaAdLz2gIR0CYUJcinpB5dX2UKGgGR0BxRRqzqrzYaAdLwmgIR0CYUKJBw++udX2UKGgGR0Bw2NDArQPaaAdL+2gIR0CYUOqcVgx8dX2UKGgGR0BwiT4Glhw3aAdLr2gIR0CYUc60IC2ddX2UKGgGR0BwCc+KTB69aAdLzmgIR0CYUeIHC4z8dX2UKGgGR0BxZYy57PY4aAdLz2gIR0CYUou01IiDdX2UKGgGR0BwXjFNtZV5aAdL12gIR0CYUrJ4jbBXdX2UKGgGR0Bx/vtiQT24aAdL3mgIR0CYU0YUWVNYdX2UKGgGR0ByhWpda+vhaAdLzmgIR0CYVNZqEeySdX2UKGgGR0ByD0L5RCQcaAdL6WgIR0CYVVOAiFCcdX2UKGgGR0BmCx9E1EVnaAdNFAJoCEdAmFWCyQgcLnV9lChoBkdAYBcHt4RmLGgHTegDaAhHQJhWapGWldl1fZQoaAZHQHPo9fXwsoVoB0vKaAhHQJhWfeoDPnl1fZQoaAZHQHIehUm2LHdoB0vGaAhHQJhWyeNDMNd1fZQoaAZHQHLREVN5+phoB0vNaAhHQJhWyejEehh1fZQoaAZHQHQGEs8PnSxoB0v1aAhHQJhW6hZha1V1fZQoaAZHQHGhYffXPJJoB0vmaAhHQJhXWNsFdLR1fZQoaAZHQHILmhZha1VoB0uzaAhHQJhXXpRoAXF1fZQoaAZHQHE+ztG/etVoB0vLaAhHQJhXfEzfrKN1fZQoaAZHQG1SsMI/qxFoB0v5aAhHQJhXr/S6UaB1fZQoaAZHQHDOiB06o2poB0vnaAhHQJhYl1GLDQ91fZQoaAZHQHHdKlYU34toB009AWgIR0CYWhWSEDhcdX2UKGgGR0BxdL+cYqG2aAdL3mgIR0CYWitaIN3GdX2UKGgGR0BxSd8eCCjDaAdLyGgIR0CYWkSuyNXHdX2UKGgGR0BwsOT3Zf2LaAdL1WgIR0CYWmsw+MZQdX2UKGgGR0Bxl6yJKraNaAdLsmgIR0CYWx8MNMGpdX2UKGgGR0ByvdvAGjbjaAdL4mgIR0CYW+UcXFcZdX2UKGgGR0BwuUHE/B3zaAdL22gIR0CYXCIl+mWMdX2UKGgGR0Bw0yIeo1k2aAdLzGgIR0CYXGPhhpg1dX2UKGgGR0BzDGq94/u9aAdL0mgIR0CYXJTWXkYGdX2UKGgGR0BxhVkK/mDEaAdL62gIR0CYXJR6Ww/xdX2UKGgGR0ByNHT5O8CgaAdNBAFoCEdAmFzgfZElV3V9lChoBkdAca76YVqN62gHTTcBaAhHQJhfvesPrfN1fZQoaAZHQG/jhnBciW5oB0vNaAhHQJhgDsWweNl1fZQoaAZHQHG6QTdtVJdoB0vbaAhHQJhgFsHjZL91fZQoaAZHQHAJd9lVcUxoB0vcaAhHQJhgNoRIz311fZQoaAZHQHEr9NJvo/1oB00iAWgIR0CYYFlfZ26kdX2UKGgGR0Bx6/L1VYITaAdNXAFoCEdAmGCScG1QZXV9lChoBkdAcJv72tdRi2gHS8VoCEdAmGCcvZh8Y3V9lChoBkdAbny7wKBuoGgHS8hoCEdAmGGTIvJzUHV9lChoBkdAc0e2Qnx8UmgHS75oCEdAmGG+pXIU8HV9lChoBkdAbfVFtsN2DGgHS8doCEdAmGHNedCmdnV9lChoBkdAb9Xof0VafWgHS9hoCEdAmGJtc0Ltu3V9lChoBkdAcKvDcdo372gHS89oCEdAmGKEeU6gd3V9lChoBkdAaQECvovBamgHTU0CaAhHQJhiiarmyPd1fZQoaAZHQEwANIbwSapoB0uwaAhHQJhkeuMdcSp1fZQoaAZHQGhgnVwxWT5oB00NA2gIR0CYZeeiBXjmdX2UKGgGR0Bwgb8KohpyaAdLxGgIR0CYZfFwDNhWdX2UKGgGR0BxE8UahpQDaAdL6GgIR0CYZndKNAC5dX2UKGgGR0BwmufZmI0qaAdL+mgIR0CYZyXJHRTkdX2UKGgGR0Byj4OBlMAWaAdL9WgIR0CYZyTvAoG6dX2UKGgGR0Bo2Kcy31BdaAdN4wFoCEdAmGei925hB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-default.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:189dee740b40b4a180f7864385609a3bc37f268ea751d3c8d0901b6957642bfc
|
3 |
+
size 146650
|
ppo-default/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-default/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f68fa982cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f68fa982d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f68fa982dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f68fa982e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f68fa982ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f68fa982f80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f68fa983010>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f68fa9830a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f68fa983130>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f68fa9831c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f68fa983250>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f68fa9832e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f68fa985680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686495370675752109,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqGpb2P3mq6bnaLOU+QXDRosgQ6lYmeuAAAgD8AAIA/wHLhvSG8hbyYP549itCzvST92L1SsIm+AACAPwAAgD+N7pO94YCgumDLCrLGQ1yw0RktN5E3BjIAAIA/AAAAAACglz4yHCA/q395vECGHL+h3RA/emWkvQAAAAAAAAAAGqlWPrxkpD5jV4K+U86dvo76NT01SvK9AAAAAAAAAABmNAQ+yBi1PzQUJT+rimu+nCqVPegCTD4AAAAAAAAAABrhxj2Fe8O5aoZtOp3tpDXUWww7XGGOuQAAAAAAAIA/+k5FvtOpMj/67HC+8qILv3z7OL46dRG7AAAAAAAAAABmSQk9KVg0unCD/rtV7N244uNOOyFxTDgAAIA/AACAP0bvBj64Hq+7k3Q5PdcZmrvx/P28+y+DvAAAgD8AAIA/7cchPpzgP7zVPz+7z9ZQOWVWpL31X3k6AACAPwAAgD/APhg+D9FqvOLB+DvJghC903jPva2y6r0AAIA/AACAP2YiubtiSrc/tJaPvpq/6D6oxJw7WMPvPAAAAAAAAAAAmqFPOxsdkj+PYaM5tABCvyQV97tWzDk9AAAAAAAAAAAAp469+FWbP7Feq755mCS/Q6aVve7gdr0AAAAAAAAAAI2qvT327CK63cNos9SF7S7Xlhq5+SS1MwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEDo4hllK+MAWyUS9mMAXSUR0CYN/Yv38GcdX2UKGgGR0BwVzZ8KG+LaAdLvGgIR0CYODjopx3ndX2UKGgGR0ByOl/b0voNaAdL3WgIR0CYOLU7jkuIdX2UKGgGR0Bwqr7Lt/nXaAdLtGgIR0CYOPSUTtb+dX2UKGgGR0BvKt1W8yvcaAdL92gIR0CYOb2pyZKGdX2UKGgGR0BziG/fwZwXaAdNHwFoCEdAmDp3Ux20RnV9lChoBkdAb7Z/vOQhfWgHS9NoCEdAmDso5PuXu3V9lChoBkdAc3uwPy08eWgHS+1oCEdAmDsphz/6wnV9lChoBkdAcQWRHPNVzmgHS7toCEdAmDwmdNFjNXV9lChoBkdAcHfI91U2k2gHS7NoCEdAmDxC704BFXV9lChoBkdAcJBRradtmGgHS9poCEdAmDxNDtw71nV9lChoBkdAYeYA8SwnpmgHTegDaAhHQJg8YvWYnfF1fZQoaAZHQEmxUipvP1NoB0vJaAhHQJg9Z58jRlZ1fZQoaAZHQHBP9YB/7SBoB0vOaAhHQJg9e2SdOIt1fZQoaAZHQG7BMRHww0xoB0u8aAhHQJg9zf/FR511fZQoaAZHQHD84fSx7iRoB0u8aAhHQJg+CS0Sh8J1fZQoaAZHQHMEQ35vcahoB0veaAhHQJg+NO9FnZl1fZQoaAZHQHAXGxlg+hZoB0vJaAhHQJg/EPPLPld1fZQoaAZHQHB2ltCRfWtoB0vqaAhHQJhA2lsP8Q91fZQoaAZHQHIMx1X/5tZoB0vjaAhHQJhBaGCZnct1fZQoaAZHQHFsD/IbOu9oB0vraAhHQJhBphAnlXB1fZQoaAZHQHAvbojfNzNoB0vFaAhHQJhBvi3ocJd1fZQoaAZHQGbOyS/0ulJoB02tAWgIR0CYQuPk7wKCdX2UKGgGR0Bu+Xk3juKGaAdLv2gIR0CYQvpzcRDkdX2UKGgGR0BxyWvA44p+aAdL+GgIR0CYQzFQEZBLdX2UKGgGR0BuRccn3L3caAdLz2gIR0CYQ1Q7LdN4dX2UKGgGR0BzR7tw71ZlaAdLxGgIR0CYQ23os7MgdX2UKGgGR0By+SxoqTbGaAdNAwFoCEdAmEOVXeWOZXV9lChoBkdAcW/x9oexOmgHS75oCEdAmEOsqe9SM3V9lChoBkdAckEcSXdCV2gHS91oCEdAmERGGZeAu3V9lChoBkdAchXzQ/oq1GgHTQEBaAhHQJhHFHWjGkx1fZQoaAZHQGKVmmk30f5oB03oA2gIR0CYR1WBz3h5dX2UKGgGR0Bw4dImPYFraAdL12gIR0CYSGxWkrPMdX2UKGgGR0ByWLIlt0muaAdL8GgIR0CYSLPzWf9QdX2UKGgGR8Br7XwTdtVJaAdNqwFoCEdAmEk9mHxjKHV9lChoBkdAcL6ZMcp9Z2gHS+RoCEdAmEld25hBq3V9lChoBkdAcUJ1Gsmv4mgHS+hoCEdAmElnskY4yXV9lChoBkdAcmUcPe54GGgHS89oCEdAmEnwW8AaN3V9lChoBkdAco4BnBciW2gHS9FoCEdAmEpkNjLB9HV9lChoBkdAcqzLjghr32gHS8ZoCEdAmEqK1PWQOnV9lChoBkdAcHfTJyQxOGgHS69oCEdAmEq1O9FnZnV9lChoBkdAcb6aef7Jn2gHS85oCEdAmErw7xNIsnV9lChoBkdAcmC3azu4PWgHTRMBaAhHQJhNCxt52Qp1fZQoaAZHQHNoGbsniNtoB00fAWgIR0CYTVtLL6k7dX2UKGgGR0Bup/k92X9jaAdL12gIR0CYTxGUOd5IdX2UKGgGR0BxVlkPMB6saAdLtGgIR0CYUC0gKWszdX2UKGgGR0BwvAslLOAzaAdLu2gIR0CYUHOXE61cdX2UKGgGR0BwVVyimEXdaAdL1mgIR0CYUJcxTKkmdX2UKGgGR0BxlM1dgOSXaAdLz2gIR0CYUJcinpB5dX2UKGgGR0BxRRqzqrzYaAdLwmgIR0CYUKJBw++udX2UKGgGR0Bw2NDArQPaaAdL+2gIR0CYUOqcVgx8dX2UKGgGR0BwiT4Glhw3aAdLr2gIR0CYUc60IC2ddX2UKGgGR0BwCc+KTB69aAdLzmgIR0CYUeIHC4z8dX2UKGgGR0BxZYy57PY4aAdLz2gIR0CYUou01IiDdX2UKGgGR0BwXjFNtZV5aAdL12gIR0CYUrJ4jbBXdX2UKGgGR0Bx/vtiQT24aAdL3mgIR0CYU0YUWVNYdX2UKGgGR0ByhWpda+vhaAdLzmgIR0CYVNZqEeySdX2UKGgGR0ByD0L5RCQcaAdL6WgIR0CYVVOAiFCcdX2UKGgGR0BmCx9E1EVnaAdNFAJoCEdAmFWCyQgcLnV9lChoBkdAYBcHt4RmLGgHTegDaAhHQJhWapGWldl1fZQoaAZHQHPo9fXwsoVoB0vKaAhHQJhWfeoDPnl1fZQoaAZHQHIehUm2LHdoB0vGaAhHQJhWyeNDMNd1fZQoaAZHQHLREVN5+phoB0vNaAhHQJhWyejEehh1fZQoaAZHQHQGEs8PnSxoB0v1aAhHQJhW6hZha1V1fZQoaAZHQHGhYffXPJJoB0vmaAhHQJhXWNsFdLR1fZQoaAZHQHILmhZha1VoB0uzaAhHQJhXXpRoAXF1fZQoaAZHQHE+ztG/etVoB0vLaAhHQJhXfEzfrKN1fZQoaAZHQG1SsMI/qxFoB0v5aAhHQJhXr/S6UaB1fZQoaAZHQHDOiB06o2poB0vnaAhHQJhYl1GLDQ91fZQoaAZHQHHdKlYU34toB009AWgIR0CYWhWSEDhcdX2UKGgGR0BxdL+cYqG2aAdL3mgIR0CYWitaIN3GdX2UKGgGR0BxSd8eCCjDaAdLyGgIR0CYWkSuyNXHdX2UKGgGR0BwsOT3Zf2LaAdL1WgIR0CYWmsw+MZQdX2UKGgGR0Bxl6yJKraNaAdLsmgIR0CYWx8MNMGpdX2UKGgGR0ByvdvAGjbjaAdL4mgIR0CYW+UcXFcZdX2UKGgGR0BwuUHE/B3zaAdL22gIR0CYXCIl+mWMdX2UKGgGR0Bw0yIeo1k2aAdLzGgIR0CYXGPhhpg1dX2UKGgGR0BzDGq94/u9aAdL0mgIR0CYXJTWXkYGdX2UKGgGR0BxhVkK/mDEaAdL62gIR0CYXJR6Ww/xdX2UKGgGR0ByNHT5O8CgaAdNBAFoCEdAmFzgfZElV3V9lChoBkdAca76YVqN62gHTTcBaAhHQJhfvesPrfN1fZQoaAZHQG/jhnBciW5oB0vNaAhHQJhgDsWweNl1fZQoaAZHQHG6QTdtVJdoB0vbaAhHQJhgFsHjZL91fZQoaAZHQHAJd9lVcUxoB0vcaAhHQJhgNoRIz311fZQoaAZHQHEr9NJvo/1oB00iAWgIR0CYYFlfZ26kdX2UKGgGR0Bx6/L1VYITaAdNXAFoCEdAmGCScG1QZXV9lChoBkdAcJv72tdRi2gHS8VoCEdAmGCcvZh8Y3V9lChoBkdAbny7wKBuoGgHS8hoCEdAmGGTIvJzUHV9lChoBkdAc0e2Qnx8UmgHS75oCEdAmGG+pXIU8HV9lChoBkdAbfVFtsN2DGgHS8doCEdAmGHNedCmdnV9lChoBkdAb9Xof0VafWgHS9hoCEdAmGJtc0Ltu3V9lChoBkdAcKvDcdo372gHS89oCEdAmGKEeU6gd3V9lChoBkdAaQECvovBamgHTU0CaAhHQJhiiarmyPd1fZQoaAZHQEwANIbwSapoB0uwaAhHQJhkeuMdcSp1fZQoaAZHQGhgnVwxWT5oB00NA2gIR0CYZeeiBXjmdX2UKGgGR0Bwgb8KohpyaAdLxGgIR0CYZfFwDNhWdX2UKGgGR0BxE8UahpQDaAdL6GgIR0CYZndKNAC5dX2UKGgGR0BwmufZmI0qaAdL+mgIR0CYZyXJHRTkdX2UKGgGR0Byj4OBlMAWaAdL9WgIR0CYZyTvAoG6dX2UKGgGR0Bo2Kcy31BdaAdN4wFoCEdAmGei925hB3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-default/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fa78940180b33c0371d8f1f8420ff750dabe3a5e3ec2f7fc251b89363a91607
|
3 |
+
size 87929
|
ppo-default/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2152e3aa822737f721c4bb414e830d1580294075b220412b28c57b6c19d6f977
|
3 |
+
size 43329
|
ppo-default/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-default/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e48620635d23b3fa61be6537c06319790c86e6a7620a0e83ec5218443efb409
|
3 |
+
size 124281
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 270.2443816, "std_reward": 12.596087344601273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-11T15:24:20.135286"}
|