alzheimer_mri_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3404
  • Accuracy: 0.8770

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 128 0.8345 0.5996
No log 2.0 256 0.8245 0.6309
No log 3.0 384 0.7492 0.6543
0.8188 4.0 512 0.7173 0.6777
0.8188 5.0 640 0.6625 0.7168
0.8188 6.0 768 0.6182 0.7373
0.8188 7.0 896 0.5058 0.8027
0.5344 8.0 1024 0.5567 0.7764
0.5344 9.0 1152 0.4702 0.8193
0.5344 10.0 1280 0.4502 0.8242
0.5344 11.0 1408 0.4024 0.8408
0.3356 12.0 1536 0.4263 0.8516
0.3356 13.0 1664 0.3782 0.8535
0.3356 14.0 1792 0.3378 0.8604
0.3356 15.0 1920 0.3570 0.8701

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
85.8M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for dewifaj/alzheimer_mri_classification

Finetuned
(2005)
this model

Spaces using dewifaj/alzheimer_mri_classification 5