|
--- |
|
base_model: |
|
- microsoft/codebert-base |
|
datasets: |
|
- devngho/the_stack_llm_annotations |
|
language: |
|
- code |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- f1 |
|
--- |
|
|
|
# devngho/code_edu_classifier_v2_microsoft_codebert-base |
|
|
|
์ด ๋ชจ๋ธ์ [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)์ classifier๋ฅผ ์ถ๊ฐํ ๋ชจ๋ธ์
๋๋ค. [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier)์ ์ฝ๋ ๋ฒ์ ์ ๋ชฉํ๋ก, ์ฝ๋์ ๊ต์ก์ฑ ์ ์๋ฅผ ํ๊ฐํฉ๋๋ค. |
|
ํ์ต์๋ [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup)์์ ์ถ์ถํ ์ํ์ [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)๋ก ํ๊ฐํ [devngho/the_stack_llm_annotations](https://huggingface.co/datasets/devngho/the_stack_llm_annotations) ๋ฐ์ดํฐ์
์ด ์ฌ์ฉ๋์์ต๋๋ค. |
|
|
|
์ด ์ฐ๊ตฌ๋ Google์ TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/)์ Cloud TPU ์ ๊ณต์ผ๋ก ์ํ๋์์ต๋๋ค. โก |
|
|
|
## ์์ธ |
|
|
|
- **์ ์:** devngho |
|
- **์ธ์ด:** code |
|
- **๋ผ์ด์ ์ค:** mit |
|
- **๊ธฐ๋ฐ ๋ชจ๋ธ:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) |
|
|
|
## ํ์ต ์์ธ |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 2048(512*4) |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 1h 36m |
|
|
|
## ํ์ต ์ฅ๋น |
|
|
|
TPU v4-8 |
|
|
|
## ์ฑ๋ฅ |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.77 0.10 0.18 101 |
|
1 0.57 0.47 0.51 739 |
|
2 0.60 0.60 0.60 2409 |
|
3 0.49 0.74 0.59 2030 |
|
4 0.51 0.03 0.05 864 |
|
5 0.00 0.00 0.00 1 |
|
|
|
accuracy 0.54 6144 |
|
macro avg 0.49 0.32 0.32 6144 |
|
weighted avg 0.55 0.54 0.50 6144 |
|
|
|
Confusion Matrix: |
|
[[ 10 71 20 0 0 0] |
|
[ 3 346 353 37 0 0] |
|
[ 0 186 1450 770 3 0] |
|
[ 0 9 509 1494 18 0] |
|
[ 0 0 80 762 22 0] |
|
[ 0 0 0 1 0 0]] |
|
``` |
|
|
|
์๋ฒ ๋ฉ ๋ชจ๋ธ์ด ์ผ๋ถ ์ธ์ด๋ฅผ ์ง์ํ์ง ์๋ ํ๊ณ์ qwen2.5 32b ๋ชจ๋ธ์ ํ๊ฐ ํ๊ณ๋ก ์ฑ๋ฅ์ด ๋ฎ์ ๊ฒ์ผ๋ก ๋ณด์
๋๋ค. 3 ์ด์๊ณผ ๋ฏธ๋ง์ผ๋ก ๊ตฌ๋ถํ ๋ f1 score๋ ์ฝ 0.77์
๋๋ค. |
|
|
|
# devngho/code_edu_classifier_v2_microsoft_codebert-base |
|
|
|
This model is [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) with classfier head. It is designed to evaluate the educational value of codes, similar to the [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier), but focused on code. The training data comes from [devngho/the_stack_llm_annotations](https://huggingface.co/datasets/devngho/the_stack_llm_annotations) dataset, contains samples extracted from [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup) and evaluated using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). |
|
|
|
This research was supported with Cloud TPUs from Google's TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/).โก |
|
|
|
- **Developed by:** devngho |
|
- **Language(s):** code |
|
- **License:** mit |
|
- **Base model:** [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) |
|
|
|
## Training detail |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 2048(512*4) |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 3h 21m |
|
|
|
## Training hardware |
|
|
|
TPU v4-8 |
|
|
|
## Performance |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.77 0.10 0.18 101 |
|
1 0.57 0.47 0.51 739 |
|
2 0.60 0.60 0.60 2409 |
|
3 0.49 0.74 0.59 2030 |
|
4 0.51 0.03 0.05 864 |
|
5 0.00 0.00 0.00 1 |
|
|
|
accuracy 0.54 6144 |
|
macro avg 0.49 0.32 0.32 6144 |
|
weighted avg 0.55 0.54 0.50 6144 |
|
|
|
Confusion Matrix: |
|
[[ 10 71 20 0 0 0] |
|
[ 3 346 353 37 0 0] |
|
[ 0 186 1450 770 3 0] |
|
[ 0 9 509 1494 18 0] |
|
[ 0 0 80 762 22 0] |
|
[ 0 0 0 1 0 0]] |
|
``` |
|
|
|
The low performance is likely due to the limitations of the embedding model, which does not support all languages and the evaluation limitations of the Qwen2.5 32B model. The F1 score is about 0.72 when separating above and below 3. |