roberta-ner / README.md
devanshrj's picture
End of training
08e1dd4
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-ner
    results: []

roberta-ner

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1963
  • Precision: 0.3814
  • Recall: 0.4134
  • F1: 0.3968
  • Accuracy: 0.9525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 60 0.2553 0.1878 0.1075 0.1368 0.9435
No log 2.0 120 0.2114 0.3456 0.2235 0.2714 0.9492
No log 3.0 180 0.2007 0.3372 0.3673 0.3516 0.9494
No log 4.0 240 0.1976 0.3618 0.3911 0.3758 0.9517
No log 5.0 300 0.1963 0.3814 0.4134 0.3968 0.9525

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1