File size: 5,722 Bytes
6097b37
 
dd2058b
4bffbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df5ec3
 
4bffbcb
bf85432
4bffbcb
 
 
bf85432
4bffbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1b1e8
4bffbcb
fd1b1e8
4bffbcb
fd1b1e8
4bffbcb
fd1b1e8
4bffbcb
fd1b1e8
4bffbcb
fd1b1e8
4bffbcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf85432
 
 
 
 
 
dd2058b
bf85432
 
 
 
 
dd2058b
bf85432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd2058b
 
 
 
bf85432
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: apache-2.0
datasets:
- dev2bit/es2bash
language:
- es
pipeline_tag: text2text-generation
tags:
- code
- bash
widget:
  - text: Muestra el contenido de file.py que se encuentra en ~/project/
    example_title: cat
  - text: Lista los 3 primeros archivos en /bin
    example_title: ls
  - text: Por favor, cambia al directorio /home/user/project/
    example_title: cd
  - text: Lista todos los 谩tomos del universo
    example_title: noCommand
  - text: ls -lh
    example_title: literal
  - text: file.txt
    example_title: simple
---

# es2bash-mt5: Spanish to Bash Model

<p align="center">
  <img width="460" height="300" src="https://dev2bit.com/wp-content/themes/lovecraft_child/assets/icons/dev2bit_monitor2.svg">
</p>

Developed by dev2bit, es2bash-mt5 is a language transformer model that is capable of predicting the optimal Bash command given a natural language request in Spanish. This model represents a major advancement in human-computer interaction, providing a natural language interface for Unix operating system commands.

## About the Model

es2bash-mt5 is a fine-tuning model based on mt5-small. It has been trained on the dev2bit/es2bash dataset, which specializes in translating natural language in Spanish into Bash commands.

This model is optimized for processing requests related to the commands:

* `cat`
* `ls`
* `cd`

## Usage

Below is an example of how to use es2bash-mt5 with the Hugging Face Transformers library:

```python
from transformers import pipeline

translator = pipeline('translation', model='dev2bit/es2bash-mt5')

request = "listar los archivos en el directorio actual"
translated = translator(request, max_length=512)
print(translated[0]['translation_text'])
```
This will print the Bash command corresponding to the given Spanish request.

## Contributions
We appreciate your contributions! You can help improve es2bash-mt5 in various ways, including:

* Testing the model and reporting any issues or suggestions in the Issues section.
* Improving the documentation.
* Providing usage examples.

--- 

# es2bash-mt5: Modelo de espa帽ol a Bash

Desarrollado por dev2bit, `es2bash-mt5` es un modelo transformador de lenguaje que tiene la capacidad de predecir el comando Bash 贸ptimo dada una solicitud en lenguaje natural en espa帽ol. Este modelo representa un gran avance en la interacci贸n humano-computadora, proporcionando una interfaz de lenguaje natural para los comandos del sistema operativo Unix.

## Sobre el modelo

`es2bash-mt5` es un modelo de ajuste fino basado en `mt5-small`. Ha sido entrenado en el conjunto de datos `dev2bit/es2bash`, especializado en la traducci贸n de lenguaje natural en espa帽ol a comandos Bash.

Este modelo est谩 optimizado para procesar solicitudes relacionadas con los comandos:
* `cat`
* `ls`
* `cd`

## Uso

A continuaci贸n, se muestra un ejemplo de c贸mo usar `es2bash-mt5` con la biblioteca Hugging Face Transformers:

```python
from transformers import pipeline

translator = pipeline('translation', model='dev2bit/es2bash-mt5')

request = "listar los archivos en el directorio actual"
translated = translator(request, max_length=512)
print(translated[0]['translation_text'])
```

Esto imprimir谩 el comando Bash correspondiente a la solicitud dada en espa帽ol.

## Contribuciones

Agradecemos sus contribuciones! Puede ayudar a mejorar es2bash-mt5 de varias formas, incluyendo:

* Probar el modelo y reportar cualquier problema o sugerencia en la secci贸n de Issues.
* Mejorando la documentaci贸n.
* Proporcionando ejemplos de uso.

---

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the es2bash dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0919

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 28

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 21.394        | 1.0   | 672   | 1.7470          |
| 2.5294        | 2.0   | 1344  | 0.6350          |
| 0.5873        | 3.0   | 2016  | 0.2996          |
| 0.3802        | 4.0   | 2688  | 0.2142          |
| 0.2951        | 5.0   | 3360  | 0.1806          |
| 0.225         | 6.0   | 4032  | 0.1565          |
| 0.2065        | 7.0   | 4704  | 0.1461          |
| 0.1944        | 8.0   | 5376  | 0.1343          |
| 0.174         | 9.0   | 6048  | 0.1281          |
| 0.1647        | 10.0  | 6720  | 0.1207          |
| 0.1566        | 11.0  | 7392  | 0.1140          |
| 0.1498        | 12.0  | 8064  | 0.1106          |
| 0.1382        | 13.0  | 8736  | 0.1076          |
| 0.1393        | 14.0  | 9408  | 0.1042          |
| 0.1351        | 15.0  | 10080 | 0.1019          |
| 0.13          | 16.0  | 10752 | 0.0998          |
| 0.1292        | 17.0  | 11424 | 0.0983          |
| 0.1265        | 18.0  | 12096 | 0.0973          |
| 0.1255        | 19.0  | 12768 | 0.0969          |
| 0.1216        | 20.0  | 13440 | 0.0956          |
| 0.1216        | 21.0  | 14112 | 0.0946          |
| 0.123         | 22.0  | 14784 | 0.0938          |
| 0.113         | 23.0  | 15456 | 0.0931          |
| 0.1185        | 24.0  | 16128 | 0.0929          |
| 0.1125        | 25.0  | 16800 | 0.0927          |
| 0.1213        | 26.0  | 17472 | 0.0925          |
| 0.1153        | 27.0  | 18144 | 0.0921          |
| 0.1134        | 28.0  | 18816 | 0.0919          |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3