es2bash-mt5: Spanish to Bash Model

Developed by dev2bit, es2bash-mt5 is a language transformer model that is capable of predicting the optimal Bash command given a natural language request in Spanish. This model represents a major advancement in human-computer interaction, providing a natural language interface for Unix operating system commands.

About the Model

es2bash-mt5 is a fine-tuning model based on mt5-small. It has been trained on the dev2bit/es2bash dataset, which specializes in translating natural language in Spanish into Bash commands.

This model is optimized for processing requests related to the commands:

  • cat
  • ls
  • cd

Usage

Below is an example of how to use es2bash-mt5 with the Hugging Face Transformers library:

from transformers import pipeline

translator = pipeline('translation', model='dev2bit/es2bash-mt5')

request = "listar los archivos en el directorio actual"
translated = translator(request, max_length=512)
print(translated[0]['translation_text'])

This will print the Bash command corresponding to the given Spanish request.

Contributions

We appreciate your contributions! You can help improve es2bash-mt5 in various ways, including:

  • Testing the model and reporting any issues or suggestions in the Issues section.
  • Improving the documentation.
  • Providing usage examples.

es2bash-mt5: Modelo de español a Bash

Desarrollado por dev2bit, es2bash-mt5 es un modelo transformador de lenguaje que tiene la capacidad de predecir el comando Bash óptimo dada una solicitud en lenguaje natural en español. Este modelo representa un gran avance en la interacción humano-computadora, proporcionando una interfaz de lenguaje natural para los comandos del sistema operativo Unix.

Sobre el modelo

es2bash-mt5 es un modelo de ajuste fino basado en mt5-small. Ha sido entrenado en el conjunto de datos dev2bit/es2bash, especializado en la traducción de lenguaje natural en español a comandos Bash.

Este modelo está optimizado para procesar solicitudes relacionadas con los comandos:

  • cat
  • ls
  • cd

Uso

A continuación, se muestra un ejemplo de cómo usar es2bash-mt5 con la biblioteca Hugging Face Transformers:

from transformers import pipeline

translator = pipeline('translation', model='dev2bit/es2bash-mt5')

request = "listar los archivos en el directorio actual"
translated = translator(request, max_length=512)
print(translated[0]['translation_text'])

Esto imprimirá el comando Bash correspondiente a la solicitud dada en español.

Contribuciones

Agradecemos sus contribuciones! Puede ayudar a mejorar es2bash-mt5 de varias formas, incluyendo:

  • Probar el modelo y reportar cualquier problema o sugerencia en la sección de Issues.
  • Mejorando la documentación.
  • Proporcionando ejemplos de uso.

This model is a fine-tuned version of google/mt5-small on the es2bash dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0919

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.1
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 28

Training results

Training Loss Epoch Step Validation Loss
21.394 1.0 672 1.7470
2.5294 2.0 1344 0.6350
0.5873 3.0 2016 0.2996
0.3802 4.0 2688 0.2142
0.2951 5.0 3360 0.1806
0.225 6.0 4032 0.1565
0.2065 7.0 4704 0.1461
0.1944 8.0 5376 0.1343
0.174 9.0 6048 0.1281
0.1647 10.0 6720 0.1207
0.1566 11.0 7392 0.1140
0.1498 12.0 8064 0.1106
0.1382 13.0 8736 0.1076
0.1393 14.0 9408 0.1042
0.1351 15.0 10080 0.1019
0.13 16.0 10752 0.0998
0.1292 17.0 11424 0.0983
0.1265 18.0 12096 0.0973
0.1255 19.0 12768 0.0969
0.1216 20.0 13440 0.0956
0.1216 21.0 14112 0.0946
0.123 22.0 14784 0.0938
0.113 23.0 15456 0.0931
0.1185 24.0 16128 0.0929
0.1125 25.0 16800 0.0927
0.1213 26.0 17472 0.0925
0.1153 27.0 18144 0.0921
0.1134 28.0 18816 0.0919

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train dev2bit/es2bash-mt5

Space using dev2bit/es2bash-mt5 1