llama-3.2-350M-fourier

This model is a fine-tuned version of llama_small_config.json on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.2583 0.0754 1000 5.1105
4.7487 0.1508 2000 4.5762
4.4098 0.2262 3000 4.3661
4.2531 0.3016 4000 4.2368
4.1448 0.3770 5000 4.1446
4.0569 0.4524 6000 4.0733
3.9844 0.5278 7000 4.0040
3.9199 0.6032 8000 3.9439
3.8622 0.6786 9000 3.8956
3.8158 0.7541 10000 3.8521
3.7792 0.8295 11000 3.8213
3.7546 0.9049 12000 3.8034
3.7425 0.9803 13000 3.7984

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.2+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
41
Safetensors
Model size
346M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.