Encoder-Decoder model with DeBERTa encoder

pre-trained models

  • Encoder: microsoft/deberta-v3-small

  • Decoder: deliciouscat/deberta-v3-base-decoder-v0.1 (6 transformer layers, 8 attention heads)

-> 297511524(298M) params

Data used

HuggingFaceFW/fineweb -> sampled 124800

Training hparams

  • optimizer: AdamW, lr=2.3e-5, betas=(0.875, 0.997)

  • batch size: 12 (maximal on Colab pro A100 env)

-> training on denoising objective (BART)

How to use

from transformers import AutoTokenizer, EncoderDecoderModel

model = EncoderDecoderModel.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.2")
tokenizer = AutoTokenizer.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.2")

Future work!

  • train more scientific data

  • fine-tune on keyword extraction task

Downloads last month
12
Safetensors
Model size
298M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train deliciouscat/deberta-v3-base-encoder-decoder-v0.2