deepseek-admin's picture
Update README.md
50c2645
|
raw
history blame
6.91 kB
metadata
license: other
license_name: deepseek
license_link: LICENSE

DeepSeek Coder

[🏠Homepage] | [🤖 Chat with DeepSeek Coder] | [Discord] | [Wechat(微信)]


1. Introduction of Deepseek Coder

Deepseek Coder is composed of a series of code language models, each trained from scratch on 2T tokens, with a composition of 87% code and 13% natural language in both English and Chinese. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.

  • Massive Training Data: Trained from scratch on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.

  • Highly Flexible & Scalable: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.

  • Superior Model Performance: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.

  • Advanced Code Completion Capabilities: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.

2. Model Summary

deepseek-coder-5.7bmqa-base is a 5.7B parameter model with Multi Query Attention trained on 2 trillion tokens.

3. How to Use

Here give some examples of how to use our model.

1)Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

2)Code Insertion

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])

3)Repository Level Code Completion

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-5.7bmqa-base", trust_remote_code=True).cuda()

input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

def load_data():
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    # Standardize the data
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

    # Convert numpy data to PyTorch tensors
    X_train = torch.tensor(X_train, dtype=torch.float32)
    X_test = torch.tensor(X_test, dtype=torch.float32)
    y_train = torch.tensor(y_train, dtype=torch.int64)
    y_test = torch.tensor(y_test, dtype=torch.int64)
    
    return X_train, X_test, y_train, y_test

def evaluate_predictions(y_test, y_pred):
    return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

class IrisClassifier(nn.Module):
    def __init__(self):
        super(IrisClassifier, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(4, 16),
            nn.ReLU(),
            nn.Linear(16, 3)
        )

    def forward(self, x):
        return self.fc(x)

    def train_model(self, X_train, y_train, epochs, lr, batch_size):
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(self.parameters(), lr=lr)
        
        # Create DataLoader for batches
        dataset = TensorDataset(X_train, y_train)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

        for epoch in range(epochs):
            for batch_X, batch_y in dataloader:
                optimizer.zero_grad()
                outputs = self(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()

    def predict(self, X_test):
        with torch.no_grad():
            outputs = self(X_test)
            _, predicted = outputs.max(1)
        return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier

def main():
    # Model training and evaluation
"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))

4. License

This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.

See the LICENSE-MODEL for more details.

5. Contact

If you have any questions, please raise an issue or contact us at [email protected].