|
--- |
|
license: other |
|
license_name: deepseek-license |
|
license_link: LICENSE |
|
base_model: deepseek-ai/DeepSeek-Coder-V2-Base |
|
library_name: transformers |
|
--- |
|
<!-- markdownlint-disable first-line-h1 --> |
|
<!-- markdownlint-disable html --> |
|
<!-- markdownlint-disable no-duplicate-header --> |
|
|
|
<div align="center"> |
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" /> |
|
</div> |
|
<hr> |
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> |
|
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> |
|
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> |
|
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> |
|
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> |
|
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;"> |
|
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;"> |
|
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
<p align="center"> |
|
<a href="#4-api-platform">API Platform</a> | |
|
<a href="#5-how-to-run-locally">How to Use</a> | |
|
<a href="#6-license">License</a> | |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a> |
|
</p> |
|
|
|
# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence |
|
|
|
## 1. Introduction |
|
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. |
|
|
|
<p align="center"> |
|
<img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true"> |
|
</p> |
|
|
|
|
|
In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found [here](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/supported_langs.txt). |
|
|
|
## 2. Model Downloads |
|
|
|
We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public. |
|
|
|
<div align="center"> |
|
|
|
| **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** | |
|
| :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: | |
|
| DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) | |
|
| DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) | |
|
| DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) | |
|
| DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) | |
|
| DeepSeek-Coder-V2-Instruct-0724 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct-0724) | |
|
</div> |
|
|
|
|
|
## 3. Chat Website |
|
|
|
You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in) |
|
|
|
## 4. API Platform |
|
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/), and you can also pay-as-you-go at an unbeatable price. |
|
<p align="center"> |
|
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true"> |
|
</p> |
|
|
|
|
|
## 5. How to run locally |
|
**Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.** |
|
|
|
### Inference with Huggingface's Transformers |
|
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. |
|
|
|
#### Code Completion |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
input_text = "#write a quick sort algorithm" |
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
#### Code Insertion |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
input_text = """<|fim▁begin|>def quick_sort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[0] |
|
left = [] |
|
right = [] |
|
<|fim▁hole|> |
|
if arr[i] < pivot: |
|
left.append(arr[i]) |
|
else: |
|
right.append(arr[i]) |
|
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>""" |
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) |
|
``` |
|
|
|
#### Chat Completion |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
messages=[ |
|
{ 'role': 'user', 'content': "write a quick sort algorithm in python."} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
# tokenizer.eos_token_id is the id of <|end▁of▁sentence|> token |
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. |
|
|
|
An example of chat template is as belows: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
You can also add an optional system message: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>{system_message} |
|
|
|
User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
### Inference with vLLM (recommended) |
|
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 8192, 1 |
|
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you?"}], |
|
[{"role": "user", "content": "write a quick sort algorithm in python."}], |
|
[{"role": "user", "content": "Write a piece of quicksort code in C++."}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
## 5. New Features 🎉🎉🎉 |
|
|
|
### Function calling |
|
|
|
Function calling allows the model to call external tools to enhance its capabilities. |
|
|
|
Here is an example: |
|
|
|
```python |
|
# Assume that `model` and `tokenizer` are loaded |
|
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) |
|
|
|
tool_system_prompt = """You are a helpful Assistant. |
|
|
|
## Tools |
|
|
|
### Function |
|
|
|
You have the following functions available: |
|
|
|
- `get_current_weather`: |
|
```json |
|
{ |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA" |
|
}, |
|
"unit": { |
|
"type": "string", |
|
"enum": [ |
|
"celsius", |
|
"fahrenheit" |
|
] |
|
} |
|
}, |
|
"required": [ |
|
"location" |
|
] |
|
} |
|
} |
|
```""" |
|
|
|
tool_call_messages = [{"role": "system", "content": tool_system_prompt}, {"role": "user", "content": "What's the weather like in Tokyo and Paris?"}] |
|
tool_call_inputs = tokenizer.apply_chat_template(tool_call_messages, add_generation_prompt=True, return_tensors="pt") |
|
tool_call_outputs = model.generate(tool_call_inputs.to(model.device)) |
|
# Generated text: '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Tokyo"}\n```<|tool▁call▁end|>\n<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Paris"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>' |
|
|
|
# Mock response of calling `get_current_weather` |
|
tool_messages = [{"role": "tool", "content": '{"location": "Tokyo", "temperature": "10", "unit": null}'}, {"role": "tool", "content": '{"location": "Paris", "temperature": "22", "unit": null}'}] |
|
tool_inputs = tokenizer.apply_chat_template(tool_messages, add_generation_prompt=False, return_tensors="pt")[:, 1:] |
|
tool_inputs = torch.cat([tool_call_outputs, tool_inputs.to(model.device)], dim=1) |
|
tool_outputs = model.generate(tool_inputs) |
|
# Generated text: The current weather in Tokyo is 10 degrees, and in Paris, it is 22 degrees.<|end▁of▁sentence|> |
|
``` |
|
|
|
### JSON output |
|
|
|
You can use JSON Output Mode to ensure the model generates a valid JSON object. To active this mode, a special instruction should be appended to your system prompt. |
|
|
|
```python |
|
# Assume that `model` and `tokenizer` are loaded |
|
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) |
|
|
|
user_system_prompt = 'The user will provide some exam text. Please parse the "question" and "answer" and output them in JSON format.' |
|
json_system_prompt = f"""{user_system_prompt} |
|
|
|
## Response Format |
|
|
|
Reply with JSON object ONLY.""" |
|
|
|
json_messages = [{"role": "system", "content": json_system_prompt}, {"role": "user", "content": "Which is the highest mountain in the world? Mount Everest."}] |
|
json_inputs = tokenizer.apply_chat_template(json_messages, add_generation_prompt=True, return_tensors="pt") |
|
json_outpus = model.generate(json_inputs.to(model.device)) |
|
# Generated text: '```json\n{\n "question": "Which is the highest mountain in the world?",\n "answer": "Mount Everest."\n}\n```<|end▁of▁sentence|>' |
|
``` |
|
|
|
### FIM completion |
|
|
|
In FIM (Fill In the Middle) completion, you can provide a prefix and an optional suffix, and the model will complete the content in between. |
|
|
|
```python |
|
# Assume that `model` and `tokenizer` are loaded |
|
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) |
|
|
|
prefix = """def quick_sort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
pivot = arr[0] |
|
left = [] |
|
right = [] |
|
""" |
|
|
|
suffix = """ |
|
if arr[i] < pivot: |
|
left.append(arr[i]) |
|
else: |
|
right.append(arr[i]) |
|
return quick_sort(left) + [pivot] + quick_sort(right)""" |
|
|
|
fim_prompt = f"<|fim▁begin|>{prefix}<|fim▁hole|>{suffix}<|fim▁end|>" |
|
fim_inputs = tokenizer(fim_prompt, add_special_tokens=True, return_tensors="pt").input_ids |
|
fim_outputs = model.generate(fim_inputs.to(model.device)) |
|
# Generated text: " for i in range(1, len(arr)):<|end▁of▁sentence|>" |
|
``` |
|
|
|
## 6. License |
|
|
|
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use. |
|
|
|
|
|
## 7. Contact |
|
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]). |
|
|